
SBOM Generation Tools in the Python Ecosystem:
an In-Detail Analysis

Serena Cofano
IMT School for Advanced Studies Lucca;

University of Genoa
Genoa, Italy

0009-0006-6539-9931
serena.cofano@imtlucca.it

Giacomo Benedetti
University of Genoa

Genoa, Italy
0000-0003-2609-6787

giacomo.benedetti@dibris.unige.it

Matteo Dell’Amico
University of Genoa

Genoa, Italy
0000-0003-3152-4993

matteo.dellamico@unige.it

Abstract—Software Bills of Material (SBOMs), which improve
transparency by listing the components constituting software,
are a key countermeasure to the mounting problem of Software
Supply Chain attacks. SBOM generation tools take project source
files and provide an SBOM as output, interacting with the
software ecosystem.

While SBOMs are a substantial improvement for security
practitioners, providing a complete and correct SBOM is still
an open problem. This paper investigates the causes of the issues
affecting SBOM completeness and correctness, focusing on the
PyPI ecosystem. We analyze four popular SBOM generation tools
using the CycloneDX standard.

Our analysis highlights issues related to dependency versions,
metadata files, remote dependencies, and optional dependencies.
Additionally, we identified a systematic issue with the lack of
standards for metadata in the PyPI ecosystem. This includes
inconsistencies in the presence of metadata files as well as
variations in how their content is formatted.

I. INTRODUCTION

Recent Software Supply Chain attacks [10], such as the
SolarWinds incident [15] and the xz attack [14], have drawn
significant interest from academics, industry players, and
governmental organizations. The requirement for increased
transparency on the Software Supply Chain, (i.e., the visibility
on its components [18]), has given rise to the Software Bill
of Materials (SBOM) [27] as a defense against these attacks.

An SBOM is a comprehensive list of the components
constituting a piece of software [26]. Maintainers can use
this list to quickly identify malicious or vulnerable software
packages by feeding it into security analysis tools to find
vulnerabilities. The US Government identified the SBOM as
a primary tool for transparency and made it compulsory for
government software in 2021 [17]. On March 12th, 2024, the
European Parliament approved the EU Cyber Resilience Act
(CRA) [11]. The CRA uses the SBOM to describe, record,
and monitor the security of products.

Numerous studies have been conducted to examine the
practitioners’ perceptions of the SBOM [29, 30, 32]. Most
users who include the SBOM into their security analyses
agree that the presence of false positives and negatives makes
SBOM quality a recurrent problem. An SBOM, to be useful
from the point of view of security, should be complete, i.e.,
include all the components, and correct, i.e., provide exact

information about them. Tools that generate the SBOM are
often responsible for losing these properties. Although the
issue is well known, few measures have been implemented,
and little research has been done on the study of generation
methodologies. Some works propose a study of the perfor-
mance of the most commonly used open-source generation
tools. They mostly focus on a single language, such as Java [2]
and Javascript [25]. The decision to focus on a single language
is driven by the fact that SBOM generation is significantly
influenced by how the ecosystem manages a project’s de-
pendencies. Other works aim to give an overview of SBOM
generation: Yu et al. [31] perform a large-scale differential
analysis on four SBOM generation tools. The differential
analysis allows them not to have to deal with ground truth
and thus be able to consider multiple languages. On the other
hand, such an approach has less detail about each individual
language and the causes that lead to different tools producing
different SBOMs for the same piece of software.

Our study focuses on the elements that primarily affect
SBOM creation in Python projects in terms of correctness and
completeness. In this work, we identify problems in SBOM
generation and determine their root causes in both ecosystem
and SBOM generation tools.

The choice of Python is driven by the following reasons:
(i) Its widespread use [28, 8, 9].

(ii) Its flexibility: there is no standard for project creation,
only guidelines (PEPs) that may not be followed. There
are several tools for creating and managing Python
projects and dependencies, and these tools require meta-
data files that specify dependencies in different ways;
this flexibility has prompted the community to develop
package managers capable of creating and managing
Python project and its dependencies. However, these
tools can create projects with differing metadata files
containing project dependencies.

(iii) Dynamic dependency resolution. Developers can specify
a range of versions or no version at all for dependencies,
and this will be resolved at installation time. For example,
when the version is not specified, the package manager
will use the last available version. In this case, the version
will be known only after the installation and depends on

ar
X

iv
:2

40
9.

01
21

4v
1

 [
cs

.C
R

]
 2

 S
ep

 2
02

4

when the package is installed.
In detail, we provide the following contribution:
• A study on the impact of the Python ecosystem on the

generation of SBOMs. In detail, we investigate how, given
the same set of dependencies, the methods used to gen-
erate the Python project influence the SBOM computed
on the projects. For this goal, we create a set of Python
projects with the same dependencies but using different
package managers.

• A study on how the approach used by SBOM generation
tools changes the final output of the SBOM. We select
four open-source SBOM generation tools and we run
them on the projects.

We find substantial differences in the generated SBOMs,
due to tool-related causes, different Python project configu-
rations, or intrinsic to the ecosystem. We identify the lack
of standards in the Python ecosystem and the defects in
SBOM generation tools as main takeaways. In particular,
we recommend that (i) Python package managers provide
metadata in a consistent and stable format, and (ii) SBOM
generation tools improve the support for the most recent and
recommended project configuration file, fixing the issues we
identify.

II. BACKGROUND

The security of a Software Supply Chain depends on the
security of its components. To monitor each component and
conduct security analysis, it’s essential to have a complete
and correct SBOM. The SBOM serves as input for security
analysis tools, allowing for the identification of vulnerabili-
ties [1]. This is crucial for security maintainers to promptly
address any issues. This section contains notions of what a
SBOM is and how it can be generated. Also, since our study
focuses on SBOMs related to Python projects, it describes
how Python projects are composed and how package managers
handle dependencies and resolve versions.

A. Software Bill Of Material

The SBOM is an inventory of software components and
dependencies, information about those components, and their
hierarchical relationships [26]. There are multiple standards for
SBOM. The most used are CycloneDX [19] and SPDX [12].
We focus our work on CycloneDX, because it is designed
primarily to generate the SBOM and is more suited for pro-
viding precise software components, which is why it is more
effective for vulnerability management. Conversely, SPDX
was designed as a tool for managing licenses, and it is now
primarily used for development [3].

The CycloneDX standard supports JSON, XML, and Pro-
tobuf formats as output [20]. The standard covers multiple
aspects of the Software Supply Chain composition, such as
the human factor, licensing, vulnerabilities, metadata, and soft-
ware components. In particular, the latter is about the software
dependencies represented by the SBOM. A component is
represented along with information useful to identify it, e.g.,
name, version, package URL (purl), and licenses. A purl is a

URL string used to identify and locate a software package in
an universal and uniform way across programming languages,
package managers, packaging conventions, tools, APIs, and
databases [21]. SBOMs are produced by SBOM generators,
which are either static or dynamic. Static tools generate
SBOMs by examining the binary or package dependencies
without executing the software. They aim to efficiently scan
large codebases, extract metadata, and identify a wide range
of components and licenses, with a low impact on computing
resources. Dynamic tools generate SBOMs by simulating and
interacting with the system where the software is installed.
The approaches used by these tools include environment
scanning, i.e., simulating an installation by creating a vir-
tual environment and looking for installed dependencies, and
runtime monitoring, i.e., instrumenting the execution. While
computationally more expensive, dynamic SBOM generation
should provide a more accurate reflection of the software’s
actual composition in production environments. However, this
technique is not based on a real installation process, but on
a simulated one which may happen at a different time from
real installations. As a result, there may be differences in
the installed dependencies based on the particularities of the
installation environment’s setup or on installation time.

B. Python

PyPI1 is the Python ecosystem’s package registry. It in-
dexes Python packages, allowing developers to add them as
dependencies to their applications. Python packages can be
distributed as either build or source distributions, which are
both archives: build (also known as wheel) distributions are
zip archives, whereas source distributions are tarballs (i.e.,
archives compressed with the tar utility). A Python project
is composed of source code and metadata files. Metadata files
are required to define the project properties and to enable
the package manager to build the project. These files can
be pyproject.toml, setup.py, requirements.txt, and lock-
files. The pyproject.toml and setup.py files are mandatory
for a project to be defined as a package and uploaded to
the PyPI registry. The former is the standard metadata file
since 2016 [5], while the latter is a legacy version still in
use. The requirements.txt file contains a list of the direct
dependencies necessary for the correct functioning of the final
project. Finally, the lockfile is the most complete representation
of the software. It contains dependencies with exact versions,
including transitive dependencies (i.e., dependencies of depen-
dencies), and guarantees integrity by hashing package content.
It is automatically generated while dependencies are declared
in the project.

The metadata files include dependencies specified with
versions in various formats [7]. Versions can be either pinned
or unpinned. Pinned versions specify the exact version using
the version matching operator “==” and are the way depen-
dencies are represented in lockfiles. Alternatively, versions
can be pinned or left unpinned in the requirements.txt,

1https://pypi.org/

2

https://pypi.org/

pyproject.toml, and setup.py files. The unpinned dependen-
cies are either unversioned or constrained, i.e., they specify a
range of possible versions.

Constrained dependencies can have different clauses: the
compatible release clause “~=”,2 which matches any candidate
version that is expected to be compatible with the specified
version, the version exclusion clause “!=”, and the inclusive
and exclusive comparison clauses “<=”, “>=”, “<”, and “>”.

The metadata files provide a way to distinguish required
dependencies from optional ones. Required dependencies are
those necessary to run the project with the core functionalities.
Optional dependencies are not fundamental to the correct
functioning of the project but are either used during the
development phase (development dependencies), or are related
to additional features that can be made available to the user.
The final user of a Python project can decide whether to install
any optional dependency.

While the pyproject.toml and the lockfile group the two
in different sections of the files, requirements.txt does not
distinguish the two. In this case, the alternative is to list
optional dependencies in a separate file.

Different package managers can handle Python projects.
Package managers can be divided in front-ends and back-ends.
The front-end manages metadata and dependencies and com-
municates with the back-end using the project’s metadata file
(pyproject.toml or setup.py). The back-end is responsible
for building the actual project in a distributable package. It’s
important to choose the back-end that aligns with the selected
front-end, as not every front-end supports every back-end.
Additionally, front- and back-ends can differ in their support
for non-Python code, the presence of a lockfile, and their
ability to obtain packages from a registry other than PyPI.

III. STUDY METHODOLOGY

In this section we illustrate how we conduct our study on
SBOM completeness and correctness in Python projects. Our
goal is to identify the issues with the generation of the SBOM
and determine their relation with the SBOM generation tool
or with the ecosystem.

We follow a three-step methodology. The first step concerns
the experimental setup, in which we create a dataset of Python
projects and select a set of SBOM generation tools for running
the experiment. The second step is SBOM generation for our
Python projects dataset using the selected tools. The third
step is analysis; this phase involves inspecting and comparing
the SBOMs to discover significant issues in their generation
and their causes. This is done by thoroughly diving into the
implementation of the selected SBOM generation tools and
comparing it with the specific Python projects for which the
tool is executed.

TABLE I
BACK-ENDS (BE) AND FRONT-ENDS (FE) SELECTED FOR PYTHON

PROJECTS GENERATION

BE

FE
Pip Hatch Pdm Pipenv Poetry

Hatchling ✓ ✓ ✓ - -

Flit - - ✓ - -

Pdm ✓ ✓ ✓ ✓ -

Poetry - - - - ✓

Setuptools ✓ ✓ ✓ - -

A. Experimental Setup

This step consists of creating a dataset3 of Python projects
and selecting SBOM generation tools.

1) Dataset creation: Our Python projects dataset is syn-
thetic. We make this choice rather than using existing active
projects because we:

(i) want to test patterns of dependency handling in the
PyPI ecosystem by observing SBOM generation tools
on projects with the same dependencies but created with
different technologies;

(ii) do not have a way to create a trusted ground truth for
the components of a large existing project [31].

Therefore, for the creation of the dataset we have to (i) select
the tools in Python that allow us to create a project, and
(ii) select the content of the projects, i.e., what dependencies
they should contain.

We base the project setups on an assessment of online
articles on package managers to match reality. The following
factors are taken into account while choosing the front-end
and back-end:

• number of Python projects that adopt them;
• number of articles that use them in a comparison or

suggest them for building a Python package;
• amount of documentation present about them;
• activity on maintenance of them: we take into account

only actively maintained package managers;
• scope of the package managers: we consider those limited

to the managing Python projects.
Due to these criteria, we select Setuptools and Poetry, which

are the most used tools [22]. Moreover, we select Pdm, Flit,
Pipenv, and Hatch which are less used, but are cited in articles
about package managers for Python [23, 4, 24, 13]. We end
up with 5 back-ends and 5 front-ends. Of the 25 possible
combinations, 12 are compatible, as shown in Table I. We
analyze all of them.

Next, we select the dependencies to add to each project.
The purpose is to study SBOM generation tools behavior in
as many case scenarios as possible. As a result, we choose to

2https://packaging.python.org/en/latest/specifications/version-specifiers/
#compatible-release

3The dataset will be publicly available upon publication.

3

https://packaging.python.org/en/latest/specifications/version-specifiers/#compatible-release
https://packaging.python.org/en/latest/specifications/version-specifiers/#compatible-release

TABLE II
SET OF INSTALLED DEPENDENCIES INSIDE OF EACH PROJECT IN THE

SAMPLE.

Name Version Type

numpy Unversioned Imported and used in the code

docopt Pinned Remote

black Pinned Remote from Git

seaborn Pinned Not used in the code

matplotlib Contrained Not used in the code

urllib3 Unversioned Not used in the code

include pinned, unversioned, and unconstrained. In addition,
we consider origins other than the default PyPI, such as
GitHub and other registries identified with URLs. We also
consider optional and development dependencies. This allows
us to choose the dependencies from Table II. Only one
dependency, Numpy, is imported and used in the code. This
helps us understand whether there is a difference between just
declaring a dependency and actually using it.

Each element in the sample is created following this proce-
dure:

1) Initialize the project according to the selected front-end.
2) Add the selected dependencies.
3) Add a main file with example code importing an installed

dependency, and using it.
4) Use the package manager to package the project in

a distributable wheel and a source tarball (to test the
correctness of the project setup).

2) SBOM generation tools selection: We select SBOM gen-
eration tools among those adopting the CycloneDX standard.
From the complete list of 219 tools hosted by the CycloneDX
Tool Center,4 we filter for those having:

• an open-source implementation;
• a command line interface;
• a recent release (i.e., at least a new release in 2023);
• Python support;
• a standalone implementation (i.e., not being an extension

of other tools);
• support for standard installation scenarios (e.g., we ex-

cluded tools scanning just container images);
• support for recent CycloneDX versions (at least version

1.3).

We select Trivy, Syft, Cdxgen, and Ort.
Trivy and Syft are static tools, which only read and parse a

selection of metadata files containing the dependencies. They
differ in how they resolve versions; more details and the
impact of this will be discussed in Section IV-A.

Cdxgen has a hybrid approach between static and dynamic.
It simulates an installation by creating a Python virtual en-
vironment and installing the dependencies; it then scans the

4https://cyclonedx.org/tool-center/

TABLE III
LIST OF SELECTED SBOM GENERATION TOOLS

Tool
version

CycloneDX
version

Generation method

Trivy 0.49.1 1.5 metadata parsing

Syft 1.0.1 1.5 metadata parsing

Cdxgen 10.2.2 1.5 metadata parsing,
environment analysis

Ort 17.0.0 1.5 metadata parsing,
PyPI querying

content of the environment and fetches the installed dependen-
cies to generate the SBOM. If this procedure fails, it proceeds
parsing metadata files.

Ort parses only the requirements.txt file as metadata;
if it is not present but the project was created using Poetry
and Pipenv, it uses the capability of those tools to gener-
ate requirements.txt. Since transitive dependencies are not
present in requirements.txt, Ort exploits the PIP logic and
directly queries PyPI to get them.

The main characteristics of the tools are summarized in
Table III.

B. SBOM Generation

We generate SBOMs for each project in our sample. Syft
and Trivy run on the host machine, while Cdxgen and Ort run
on a Docker container.

We obtain a total of 48 SBOMs. The 12 SBOMs produced
by Ort were in XML format; we converted them to JSON using
a Python script. We manually verified that the conversion did
not affect the SBOM content.

C. Analysis

This phase is divided into two sub-phases: (i) observing the
SBOMs and identifying the correctness (i.e., wrong versions)
and completeness (i.e., lost dependencies) issues; (ii) looking
for the causes of these issues, which are either due to the
ecosystem itself (i.e., to how the projects are structured), or
to the SBOM generation tools (because of bugs and/or root
causes of the methodology used).

1) SBOM Analysis: We manually analyze each SBOM. We
verify completeness by checking whether direct, transitive,
remote, and optional dependencies are present; for correctness,
we check if the versions are exact. To perform this task, since
for unpinned dependencies we cannot determine a correct
version, we compare the version numbers output by different
SBOMs.

2) Investigation of Causes: After determining the critical
issues in the generated SBOMs, we identify the causes. To do
this we analyze tools through static code analysis, documen-
tation study, and an assessment of the community reaction to
some of the tool issues by searching for issues on GitHub.
From this analysis, we can determine whether an issue is due
to implementation or methodological flaws of the tools, or

4

https://cyclonedx.org/tool-center/

from the way the package managers handle dependencies. We
discuss the results in Section IV.

IV. RESULTS

In this section, we analyze SBOMs for completeness and
correctness, as discussed in Section III. We present identified
issues and their causes, differentiating between ecosystem and
SBOM generation tools origins. Table IV gives an overview
of our findings, showing how SBOM generation tools behave
based on the package manager.

We identify two scenarios when these issues arise: version
management and metadata file handling. Therefore, we group
the issues into these two categories and consequently divide
the section. Table V illustrates how issues within these cat-
egories impact the completeness and correctness of SBOMs
across the ecosystem (E) and the SBOM generation tools (T).

Recall Section III, we imported a dependency in the code,
i.e., Numpy. It is noteworthy that the source code is never
analyzed by SBOM generation tools, with the only exception
of Cdxgen for the project generated by Hatch. This is a
fallback approach Cdxgen uses when there are not supported
metadata files. We conducted some manual experiments on
this behavior noticing that it works only in specific cases.
Since SBOMs are not affected by the actual importing of a
dependency in the source code, we do not report any specific
result for that.

A. Version Management Issues

Version management is the process of assigning a version
to a package. If the version is explicit, the tools should detect
it; otherwise, they should determine it.

As discussed in Section II-B, package managers allow
declaring dependencies without specifying an exact version
(E9). Specifically, they allow omitting the version or indicating
a range of possible versions; the exact version is defined at in-
stallation time. SBOM generation tools implement techniques
to resolve the version.

The tools based solely on static analysis of metadata files,
Syft and Trivy, ignore unversioned dependencies and do not
include them in the final SBOM (T3), resulting in a loss of
information.

When the version is indicated through a range, Syft applies
guessing techniques (T6). Specifically, the guessing technique
identifies comparison operators, discarding those not including
“=” and converting the remaining ones to “==”. For versions
like “1.1.*”, the asterisk is replaced with a “0”. Considering
that Yu et al. found that on average only about 46% of the
dependencies in the requirements.txt files are pinned [31],
this technique leads to a significant number of false positives
in the SBOM, affecting its correctness.

Tools such as Cdxgen and Ort try to exploit the same version
resolution mechanism used by package managers. Cdxgen
simulates the installation, while Ort contacts the PyPI API.
Constraints are resolved in the same way that they are during
installation. Theoretically, this technique allows replicating
what is done at installation time; however, it is valid only

if installation and SBOM generation happen at the same time.
For example, if an unspecified version is resolved as “latest”
at a particular moment and the project is installed later, the
two “latest” versions may not coincide. This would result in
a loss of correctness and completeness.

B. Metadata Files Management Issues

Metadata files management includes identifying them, pars-
ing them, or using them to install dependencies in a simulated
environment.

We categorize the discussion based on the specific files
involved: lockfile, pyproject.toml, and requirements.txt.
Each paragraph highlights the challenges and inconsistencies
associated with these files, and how they impact the complete-
ness and correctness of the SBOM. Finally, we highlight some
specific aspects of addressing optional and remote dependen-
cies in metadata file handling.

1) Lockfiles: Most SBOM generation tools rely on the
lockfile to collect dependencies. As discussed in Section II,
a lockfile is supposed to be the most complete representation
of a software, freezing both direct and transitive dependencies
to specific instances. These files, although detailed, lack a
standardized format in the Python ecosystem (E8), making
their usage difficult. Python projects can use various formats
for lockfiles, such as those from Poetry, Pipenv, and Pdm,
resulting in tools developing ad hoc implementations for each
(E8). When the tool does not implement a specific lockfile, it
cannot parse it and thus ignores it, losing the dependencies it
contains (T2). This lack of standardization causes variability
and inconsistencies in the generated SBOMs, affecting both
completeness and correctness. Moreover, the lockfile is not
mandatory for Python projects (E2). Thus, some package
managers (e.g., Hatch) do not generate this file at all (E5).

Ort does not directly parse the lockfile, but instead converts
them to requirements.txt format via the package man-
agers’ commands. This applies solely to Poetry and Pipenv—
i.e., “poetry export” and “pipenv requirements”. However,
SBOM generation does not work for Pipenv due to a known
implementation issue.5

2) pyproject.toml: pyproject.toml file is a standard for
modern Python projects, hence package managers create it
during project initialization. However, SBOM generation tools
generally ignore this file (T1), except for Ort and Trivy, which
consider the pyproject.toml file generated by Poetry. They
parse the table containing dependencies, which is formatted
with a syntax specific to Poetry. This SBOM generation tools
approach leads to significant gaps in dependency collection,
thus affecting both the completeness and correctness of the
SBOM.

An example of this issue is the Hatch project, where
neither lockfiles nor requirements.txt files are present. Even
though the pyproject.toml file contains the full list of direct
dependencies, the SBOM is empty because tools do not parse
this file, resulting in a total loss of completeness.

5https://github.com/aboutcode-org/python-inspector/issues/11

5

TABLE IV
RESULTS OVERVIEW.

NOTES: * ONLY DEPENDENCIES THAT ARE ALSO USED IN THE APPLICATION CODE , ** IT DOES NOT WORK DUE TO IMPLEMENTATION ERRORS.
CDXGEN = , ORT = , SYFT = , TRIVY =

Hatch Pdm Pipenv Poetry Pip

Find direct dependencies *

Find transitive dependencies -

Find remote dependencies -

Find optional dependencies -

Implement resolution of not present versions NA NA NA NA

Implement resolution of constrained versions NA NA NA NA

Implement parsing of lockfiles NA ** NA

Implement parsing of requirements.txt NA NA NA NA

Implement parsing of pyproject.toml - - - -

Another issue is the coexistence of the old standard
setup.py alongside pyproject.toml (E1). While the Python
community strongly encourages updating to the new stan-
dard [5, 6], some tools still support only setup.py, resulting
in incomplete SBOMs for new projects.

3) requirements.txt: All of the tools we analyze are
able to retrieve direct dependencies from this file. However,
if a developer chooses a different name for this file, these
tools cannot detect it due to the absence of a standardized
naming convention (E3). This inconsistency leads to a loss of
completeness as the information in the requirements.txt file
might be ignored.

Apart from lockfile, metadata files contain only direct
dependencies by default (E4). Moreover, requirements.txt

files typically include only direct dependencies (E4). Because
of that, tools relying on static parsing of metadata files miss out
on transitive dependencies when there is no lockfile present,
thus affecting the completeness and correctness of the SBOM.

Remote Dependencies. Remote dependencies are univo-
cally identified by: name, version, and URL. This information
can be (1) wrapped by the URL or (2) listed by field,
depending on the lockfile format. Considering these two
cases: (1) When SBOM generation tools have to extract the
remote dependency information out of the URL, often fail to
correctly parse the URL (T5), leading to missing versions and
incomplete dependencies. (2) Because there are no standards in
the format of lockfiles (E8), the parsing methods of some tools
may not comply with how the dependency is declared. This
can lead to missing or incorrect dependency information. For
example, Pipenv lockfile omits versions for remote dependen-
cies, causing SBOM generation tools to miss the dependency
(E7).

Optional Dependencies. The lack of a univocal standard
for declaring optional dependencies (E6) causes misidentifica-
tion and loss of these dependencies in the SBOM. SBOM
generation tools sometimes fail to correctly parse optional
dependencies (T4), resulting in missing dependencies. This
issue is particularly evident in Pipenv, where Syft and Trivy

fail to detect optional dependencies due to the formatting
of the Pipenv lockfile. The lockfile divides dependencies
into two groups: “default” and “develop”, with the latter
containing the optional dependencies. Syft and Trivy’s parsing
implementations only consider the “default” group, excluding
optional dependencies from the SBOM. This causes a lack of
correctness in the generated SBOM.

V. RELATED WORKS

Despite the emergence of the SBOM technology and the
well-known problems of its generation [29, 32, 30], there is
little literature on the precise definition of these problems
and identification of the causes. We can classify the works
on SBOM generation into two groups: those considering
different programming languages and those focusing on a
single language.

Mirakhorli et al. [16] perform an empirical analysis of
tools related to SBOMs. They classify the open- and closed-
source tools based on their role, then focus on the tools for
SBOM generation and analyze five open-source tools testing
them on a Java control project. Among the main takeaways
they identify the lack of a reliable ground truth, inconsistency
among SBOMs generated by different SBOM generation tools
and a low accuracy in case of dependencies malpractices, e.g.,
hard-coding or dynamically loading dependencies.

Yu et al. [31] conduct a large-scale differential analysis
of the correctness of four popular SBOM generators on
7,876 open-source projects written in Python, Ruby, PHP,
Java, Swift, C#, Rust, Golang and JavaScript. The differential
analysis makes it possible to avoid generating a ground truth
at the cost of not evaluating the precision of the tools. Con-
sidering different languages allows them to have an overview
of the correctness of the SBOM generation tools, but fewer
details. Among the contributions, they focus on Python by
demonstrating a possible attack; however, they do not discuss
the differences among projects that use different package
managers. Two works focus only on a single language: Balliu
et al. [2] focus on Java, Rabbi et al. [25] focus on Javascript;

6

TABLE V
COMPREHENSIVE OVERVIEW OF ISSUES, DEPENDING ON TOOLS (T#) AND ECOSYSTEM (E#).

Property Effect Issue

Completeness Missing Dependencies

T1 SBOM generation tool does not consider pyproject.toml file.

T2 SBOM generation tool does not consider lockfile.

T3 SBOM generation tool ignores dependencies without pinned version.

T4 SBOM generation tool fails in correct parsing of the optional dependency.

T5 SBOM generation tool does not properly parse the URL of the packages.

E1 Ecosystem has two build interfaces, setup.py and pyproject.toml.

E2 The use of a lockfile is not mandatory.

E3 The ecosystem does not provide a standard file name for the requirements.txt file.

E4 Metadata files contain only direct dependencies.

E5 Package manager does not create a lockfile.

E6 Lack of a univocal standard for declaring optional dependencies.

E7 Package managers do not explicitly declare version of the package.

Correctness

Wrong Dependencies
T4 SBOM generation tool fails in parsing of the optional dependency.

T6 SBOM generation tool guesses the dependency’s version.

T7 SBOM generation tool does not report the origin of the packages.

Missing Versions

T5 SBOM generation tool does not properly parse the URL of the packages.

E7 Package managers do not explicitly declare version of the package.

E8 The format for the lockfile is not standardized.

E9 Version can be omitted in metadata files.

they are related, with the second being inspired by the first.
In this case, the authors recognize the need to focus on a
single language. They focus on the impact the generation
methodologies of the tools can have on the final SBOM, and
on the critical aspects of the SBOM itself, rather than on the
impact the ecosystem can have on the generated SBOM.

VI. DISCUSSION

This study aims to understand the relationship between
SBOM generation tools and the Python software ecosystem.

We identify two root causes common to all the generation
issues explored in Section IV: (1) The lack of standards in the
Python ecosystem, and (2) the approximation of dependency
solving of SBOM generation tools. From them, we provide
consequent recommendations.

Major Takeaways

Lack of standards for Python. SBOM generation is largely
helped by the presence of standards. Knowing which files
must be in a project and how those files must be defined
allows SBOM generation tools to automatically explore the
filesystem and retrieve information necessary to generate a
complete and correct SBOM. The lack of this property in
Python makes SBOM generation hardly consistent with the
expected standards. The clearest example is the lack of a
standard for the lockfile. A lockfile should represent the most
accurate representation of a software’s dependency network;

since, however, the format varies depending on the package
manager, it is problematic for SBOM generation tools to use
it to obtain a coherent SBOM.
Defects in SBOM generation tools. While the ecosystem
is problematic, tools can also be blamed in various cases:
(i) they do not consider the pyproject.toml file, missing
dependencies in Python projects following the most recent
standard; (ii) they implement inaccurate version-solving tech-
niques that affect the SBOM correctness; (iii) they do not
provide warnings when they cannot ensure completeness and
correctness of the SBOM.

Recommendations

Consequently to our takeaways we provide two recommen-
dations:

For the Python ecosystem: The Python ecosystem should
push for initiatives proposing standards. Issues in SBOM
generation can be largely addressed once the content of a
Python project and its files is standardized.

For the SBOM generation tools: SBOM generation tools
are required to consider the new Python standard build inter-
face by parsing the pyproject.toml file. Most SBOMs will
achieve completeness with this feature.

Additional Takeaway: Version Management

Version management is a complex theme because the
version of unpinned dependencies is solved at installation

7

time. An SBOM created at a different time from software
installation can be incorrect (e.g., the latest version of a library
changed), but also incomplete (e.g., the new library version
introduced a new recursive dependency). Currently, SBOM
generation tools seem to merely skim the issue; we think that
in the future alternative solutions should be explored (e.g.,
deeper integration with package managers to pin all versions
according to the SBOM, or associating SBOMs with complete
installations rather than source versions).

VII. CONCLUSION

We perform a study of SBOM generation in the Python
ecosystem, identifying causes of missing completeness and
correctness. We find that the lack of standards in the Python
ecosystem is the main cause of inaccurate SBOMs, but also
that SBOM generation tools do not use the pyproject file
and do not implement proper techniques for obtaining correct
dependency versions. Based on our findings, we provide
recommendations that can solve issues affecting SBOM gen-
eration for Python projects, providing better SBOMs and, con-
sequently, better transparency of the Software Supply Chain.

REFERENCES

[1] Anchore. Guide to SBOMs: What They are and Their
Role in Cybersecurity. URL: https://anchore.com/sbom/
what-is-an-sbom/.

[2] Musard Balliu et al. “Challenges of Producing Software
Bill of Materials for Java”. In: IEEE Security & Privacy
21.6 (2023). DOI: 10.1109/MSEC.2023.3302956.

[3] Barak Brudo. SPDX vs. CycloneDX: SBOM Formats
Compared. URL: https://scribesecurity.com/blog/spdx-
vs-cyclonedx-sbom-formats-compared/.

[4] Giacomo Caironi. Python project managers compari-
son. URL: https : / / www . giacomocaironi . dev / posts /
python-project-managers-comparison/.

[5] Brett Cannon, Nathaniel J. Smith, and Donald Stufft.
PEP 518 - Specifying Minimum Build System Require-
ments for Python Projects. URL: https:/ /peps.python.
org/pep-0518/.

[6] Brett Cannon et al. PEP 621 – Storing project metadata
in pyproject.toml. URL: https: / /peps.python.org/pep-
0621/.

[7] Alyssa Coghlan and Donald Stufft. PEP 440 – Ver-
sion Identification and Dependency Specification. URL:
https://peps.python.org/pep-0440/.

[8] Kyle Daigle. Octoverse: The state of open source and
rise of AI in 2023. URL: https://github.blog/2023-11-
08-the-state-of-open-source-and-ai/.

[9] Alexandre Decan, Tom Mens, and Maelick Claes. “On
the topology of package dependency networks: a com-
parison of three programming language ecosystems”.
In: Proccedings of the 10th European Conference on
Software Architecture Workshops. 2016. DOI: 10.1145/
2993412.3003382.

[10] ENISA. Threat Landscape For Supply Chain Attack.
2021. DOI: 10.2824/168593. URL: www.enisa.europa.
eu..

[11] EU. Cyber Resilience Act. URL: https : / / www .
cyberresilienceact.eu/.

[12] The Linux Fountation. SPDX. URL: https://spdx.dev.
[13] Shubham Gandh. Managing Python Dependencies.

URL: https: / /www.fuzzylabs.ai /blog- post /managing-
python-dependencies.

[14] Roman Kublin. The XZ Attack – A Software Supply
Chain Earthquake. URL: https : / /myrror. security / the-
xz-attack-a-software-supply-chain-earthquake/.

[15] Jeferson Martínez and Javier M Durán. “Software sup-
ply chain attacks, a threat to global cybersecurity:
SolarWinds’ case study”. In: International Journal of
Safety and Security Engineering (2021). DOI: 10.18280/
ijsse.110505.

[16] Mehdi Mirakhorli et al. A Landscape Study of Open
Source and Proprietary Tools for Software Bill of Mate-
rials (SBOM). 2024. DOI: 10.48550/arXiv.2402.11151.

[17] NIST. Executive Order 14028, Improving the Nation’s
Cybersecurity. 2021. URL: https : / / www . nist . gov /
itl / executive - order - 14028 - improving - nations -
cybersecurity.

[18] Chinenye Okafor et al. “SoK: Analysis of Software
Supply Chain Security by Establishing Secure Design
Properties”. In: SCORED ’22. Association for Com-
puting Machinery, Inc, 2022. DOI: 10.1145/3560835.
3564556.

[19] OWASP. CycloneDX. URL: https://cyclonedx.org.
[20] OWASP. Specification Overview. URL: https : / /

cyclonedx.org/specification/overview/.
[21] package-url. purl-spec. URL: https : / / github . com /

package-url/purl-spec.
[22] pyOpenSci. Python Packaging Tools. URL: https : / /

www.pyopensci .org/python- package- guide/package-
structure-code/python-package-build-tools.html.

[23] PyPA. Packaging Python Projects. URL: https://tinyurl.
com/4pam8jj4.

[24] PyPA. Tool recommendations. URL: https://packaging.
python.org/en/latest/guides/tool-recommendations/.

[25] Md Fazle Rabbi et al. “SBOM Generation Tools Under
Microscope: A Focus on The npm Ecosystem”. In:
Proceedings of the 39th ACM/SIGAPP Symposium on
Applied Computing (2024). DOI: 10 . 1145 / 3605098 .
3635927.

[26] Software Bill Of Material. URL: https://www.ntia.gov/
page/software-bill-materials.

[27] Software Bill Of Materials. URL: https://www.cisa.gov/
sbom.

[28] Stackoverflow. Developer Survey. URL: https://tinyurl.
com/yhbf84m2.

[29] Trevor Stalnaker et al. “BOMs Away! Inside the Minds
of Stakeholders: A Comprehensive Study of Bills of
Materials for Software Systems”. In: Proceedings of the

8

https://anchore.com/sbom/what-is-an-sbom/
https://anchore.com/sbom/what-is-an-sbom/
https://doi.org/10.1109/MSEC.2023.3302956
https://scribesecurity.com/blog/spdx-vs-cyclonedx-sbom-formats-compared/
https://scribesecurity.com/blog/spdx-vs-cyclonedx-sbom-formats-compared/
https://www.giacomocaironi.dev/posts/python-project-managers-comparison/
https://www.giacomocaironi.dev/posts/python-project-managers-comparison/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0621/
https://peps.python.org/pep-0440/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://doi.org/10.1145/2993412.3003382
https://doi.org/10.1145/2993412.3003382
https://doi.org/10.2824/168593
www.enisa.europa.eu.
www.enisa.europa.eu.
https://www.cyberresilienceact.eu/
https://www.cyberresilienceact.eu/
https://spdx.dev
https://www.fuzzylabs.ai/blog-post/managing-python-dependencies
https://www.fuzzylabs.ai/blog-post/managing-python-dependencies
https://myrror.security/the-xz-attack-a-software-supply-chain-earthquake/
https://myrror.security/the-xz-attack-a-software-supply-chain-earthquake/
https://doi.org/10.18280/ijsse.110505
https://doi.org/10.18280/ijsse.110505
https://doi.org/10.48550/arXiv.2402.11151
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://doi.org/10.1145/3560835.3564556
https://doi.org/10.1145/3560835.3564556
https://cyclonedx.org
https://cyclonedx.org/specification/overview/
https://cyclonedx.org/specification/overview/
https://github.com/package-url/purl-spec
https://github.com/package-url/purl-spec
https://www.pyopensci.org/python-package-guide/package-structure-code/python-package-build-tools.html
https://www.pyopensci.org/python-package-guide/package-structure-code/python-package-build-tools.html
https://www.pyopensci.org/python-package-guide/package-structure-code/python-package-build-tools.html
https://tinyurl.com/4pam8jj4
https://tinyurl.com/4pam8jj4
https://packaging.python.org/en/latest/guides/tool-recommendations/
https://packaging.python.org/en/latest/guides/tool-recommendations/
https://doi.org/10.1145/3605098.3635927
https://doi.org/10.1145/3605098.3635927
https://www.ntia.gov/page/software-bill-materials
https://www.ntia.gov/page/software-bill-materials
https://www.cisa.gov/sbom
https://www.cisa.gov/sbom
https://tinyurl.com/yhbf84m2
https://tinyurl.com/yhbf84m2

IEEE/ACM 46th International Conference on Software
Engineering. 2024. DOI: 10.1145/3597503.3623347.

[30] Boming Xia et al. “An Empirical Study on Software Bill
of Materials: Where We Stand and the Road Ahead”.
In: Proceedings - International Conference on Software
Engineering (2023). DOI: 10 .1109/ ICSE48619.2023.
00219.

[31] Sheng Yu et al. On the Correctness of Metadata-based
SBOM Generation: A Differential Analysis Approach.

[32] Nusrat Zahan et al. “Software Bills of Materials Are
Required. Are We There Yet?” In: IEEE Security and
Privacy 21 (2 2023). DOI: 10 . 1109 / MSEC . 2023 .
3237100.

9

https://doi.org/10.1145/3597503.3623347
https://doi.org/10.1109/ICSE48619.2023.00219
https://doi.org/10.1109/ICSE48619.2023.00219
https://doi.org/10.1109/MSEC.2023.3237100
https://doi.org/10.1109/MSEC.2023.3237100

	Introduction
	Background
	Software Bill Of Material
	Python

	Study methodology
	Experimental Setup
	Dataset creation
	sbom generation tools selection

	SBOM Generation
	Analysis
	sbom Analysis
	Investigation of Causes

	Results
	Version Management Issues
	Metadata Files Management Issues
	Lockfiles
	pyproject.toml
	requirements.txt

	Related Works
	Discussion
	Conclusion

