
Alice in (Software Supply) Chains: Risk
Identification and Evaluation

Giacomo Benedetti(B) , Luca Verderame , and Alessio Merlo

DIBRIS - University of Genoa, Genoa, Italy
{giacomo.benedetti,luca.verderame,alessio.merlo}@dibris.unige.it

Abstract. The fast pace of modern development paradigms like DevOps
boosted the complexity of development pipelines. In particular, devel-
opers rely on many external assets and third-party software to build
the final product and match the demanding requirements in terms of
release cycles and functionalities. However, such a choice impacts all the
elements of the development pipeline composing the so-called Software
Supply Chain (SSC), degrading its maintainability and security. From
a security standpoint, successful attacks can go unnoticed and impact
many targets that use the affected software before being resolved. Unfor-
tunately, traditional security assessment methodologies might detect the
symptoms (e.g., the piece of vulnerable code) but not the cause, i.e., the
attack vector and the affected asset of the SSC, failing to mitigate the
risk of new attack campaigns.

In this paper, we propose Sunset, a methodology with a two-fold objec-
tive. First, it allows the automatic reconnaissance of the SSC assets and
dependencies to alleviate the burden of monitoring the composition of the
SSC. Then, it computes a risk profile, identifying the SSC risk sources
and how they can impact the final software to support the identifica-
tion of the weakest points of the SSC and activate the necessary orga-
nizational and technical countermeasures to prevent future SSC attack
campaigns.

Keywords: Software supply chain · Software supply chain security ·
Risk identification · Software security

1 Introduction

The DevOps paradigm has tightly integrated development, delivery, and opera-
tions, into the development process, facilitating and speeding up the continuous
release of software components [10]. Such a paradigm drove the tight integra-
tion of heterogeneous components such as software artifacts (e.g., third-party
libraries and binaries), assets (e.g., software repositories and package managers),
and personnel that contribute to a software product or that have the opportu-
nity to modify its content (e.g., developers and maintainers). Those elements
compose the so-called Software Supply Chain (SSC) [1].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Vallecillo et al. (Eds.): QUATIC 2022, CCIS 1621, pp. 281–295, 2022.
https://doi.org/10.1007/978-3-031-14179-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14179-9_19&domain=pdf
http://orcid.org/0000-0003-2609-6787
http://orcid.org/0000-0001-7155-7429
http://orcid.org/0000-0002-2272-2376
https://doi.org/10.1007/978-3-031-14179-9_19


282 G. Benedetti et al.

In the last years, however, SSC has become hard to maintain and under-
stand, as it needs to be adapted to cope with the evolution of the underlying
software and systems, including technological changes (e.g., changes in architec-
tures, operating systems, or library upgrades) [44]. For instance, some parts of
the SSC become unnecessary during the evolution of the software and can be
removed, or some others (e.g., testing environments) become obsolete and should
be upgraded/replaced.

In addition, from a security standpoint, the SSC offers an appealing entry
point for attackers that aim to target the final software and its consumers, as
witnessed by recent security reports [2,27]. In particular, a successful attack
in the software supply chain might go unnoticed for a long period, impact-
ing a large number of companies that use the affected supplier’s software. The
CodeCov attack [20], for example, exploited a configuration vulnerability in the
Docker files of the CodeCov code coverage tool that allowed external attackers
to access the source code stored in the repositories of 23000 customers. The
difficulty of maintaining and evaluating the security posture of a SSC drove
the attention of both the industrial and research community. For this reason,
different approaches emerged in recent years. These approaches can be mainly
divided into two groups. The first set of methodologies and tools focuses on
detecting vulnerabilities in the software code directly in the DevOps pipelines.
Notable examples include snyk [31] and slscan [29]. Other solutions, instead,
focus on the integrity of software and its dependencies, such as Google SLSA
[32], MITRE D3FEND [18], and ReproducibleBuilds [26]. However, we argue
that the proposed solutions allow the mitigation of security vulnerabilities but
fail to identify their root causes and, thus, to prevent future attack campaigns.
Supporting that, the ENISA reports that 66% of attacks targeting the Software
Supply Chain come from unknown sources [11]. In order to fill such a gap, this
paper presents Sunset (Software Supply Chain Risk Identification), a method-
ology that supports the maintenance and the risk evaluation of Software Supply
Chains. First, the methodology allows for the automatic reconnaissance of all
the elements of a Software Supply Chain and their dependencies. Then, it sup-
ports the identification of all the security risks of the SSC and its components
by generating a risk profile that details where threats originate, which path they
follow to reach the final software, and their severity.

Structure of the Paper. The rest of the paper is organized as follows: Section 2
introduces the software supply chain along with its vulnerabilities and attacks.
Section 3 details the Sunset methodology and its architecture. Section 4 discusses
the current state-of-the-art for software supply chain security, while Sect. 5 con-
cludes the paper and points out some future extensions of this work.

2 Software Supply Chain

The Software Supply Chain (SSC) contains all the elements, called assets, that
contribute to the development of a software artifact, namely the final product.
SSC assets include structural elements (e.g., code repositories and development



Alice in (Software Supply) Chains: Risk Identification and Evaluation 283

servers), software components (e.g., libraries and executables), and organiza-
tional entities (e.g., developers and software maintainers). Inside the SSC, we
can distinguish between supplier assets and customer assets. The former con-
tains all assets not explicitly created or defined for the final product, e.g., an
external library or a package manager. The latter comprises assets the final
software will interface with once deployed in the production environment.

In a typical DevOps scenario, depicted in Fig. 1, the SSC contributes to
the pre-release phase, where the organization selects (plan), implements (code),
packs (build), and tests (test) all the elements composing the final software.

PLAN CODE BUILD TEST RELEASE DEPLOY OPERATE MONITOR

Pre-Release Phase Post-Release Phase

Fig. 1. The DevOps workflow.

MyWebApp

Std Libs
Std Libs

Dev/
seclogin

SecLogin

PyPI
Modules

pallets/
flask

benoitc/
gunicorn

Flask

gunicorn

Maintainer

Contributors

Contributors

Fig. 2. MyWebApp software supply chain.

Figure 2 depicts an example of supplier assets composing the SSC of a Python
web app called MyWebApp. MyWebApp uses a set of standard python libraries
(e.g., os and glob) and two external modules (i.e., Flask and Gunicorn) imported



284 G. Benedetti et al.

using the PyPI package manager. Both modules are hosted on public GitHub
repositories, where maintainers and contributors provide regular updates and
new functionalities. Also, MyWebApp manually imports another library, called
SecLogin. SecLogin is developed and hosted on a GitLab repository by a single
maintainer and relies on standard python libraries as well.

2.1 Software Supply Chain Vulnerabilities and Attacks

An SSC vulnerability is defined as a security vulnerability affecting an asset that
could evolve into an attack once exploited. Such vulnerability may happen during
the different stages of software development. In particular, Common Weakness
Enumeration [40], i.e., CWE, highlights that 91% of security weaknesses are
introduced during design (462 CWEs) and implementation (724 CWEs).

One of the most significant advantages of attack campaigns targeting software
supply chains is that their impacts are not limited to the final software. They
can also harm assets belonging to more than one SSC and the affected software
customers. As a result, this form of attack is more likely to go unnoticed and
deliver a higher payout to the attacker [43].

Supporting the importance of the security evaluation of software supply
chains, the MITRE ATT&CK framework [39], identified the supply chain com-
promise as an initial access tactic.

Let’s consider the SSC example in Fig. 2. If the maintainer introduces a Static
Application Security Testing (SAST) tool, during the build phase of the final
software, to evaluate MyWebApp, the analysis may identify some security vul-
nerabilities and map them to known CWEs. In our example, the code analyzer
detects CWE-20 (Improper Input Validation) [34], CWE-89 (Improper Neutral-
ization of Special Elements used in an SQL Command) [37], and CWE-798 (Use
of Hard-coded Credentials) [36].

Thanks to the SAST security report, the developers of MyWebApp can patch
the source code. However, the developers do not have information regarding the
SSC asset that caused the vulnerability or the used attack vectors.

This lack of information is caused by the closed range analysis provided
by vulnerability assessment techniques, which aim to just alert developers of
vulnerability. Then developers cannot effectively patch the vulnerability by tak-
ing actions considering the smallest possible piece of asset which originates the
threat.

For instance, the vulnerability assessment tools cannot detect that the cre-
dential of one of the contributors of the GitLab repository of the SecLogin module
has been compromised using a social engineering attack. Indeed, thanks to this
attack vector, attackers can inject malicious code into the module and, thus, the
SSC, reaching the final software. This lack of information prevents developers
from identifying the compromised repository and adopting a mitigation action
(e.g., disconnecting the SecLogin repository) to cope with the risk to the final
software.



Alice in (Software Supply) Chains: Risk Identification and Evaluation 285

3 Sunset

This section introduces the basics of Sunset (Software Supply Chain Risk Identi-
fication), a methodology to automatically model the SSC and to identify the risk
that assets pose to the final software.

Analysis

Assets 
Identification

Relationships
Identification

Model 
Composition

SSC
Model

Risk 
Analysis

SSC Risk 
Report

SSC Risk 
Model

SSC 
Structure

Properties
Analysis

Model
Composition

Risk
Identification

Project Source
Code

Fig. 3. Sunset architecture.

Sunset automatically extracts a model of the Software Supply Chain in terms
of assets and dependencies, given only the source code of the final software. Then,
it extracts the cybersecurity risk of each asset and computes how it can impact
the security of the final software product.

The workflow of the methodology, depicted in Fig. 3, consists of three phases:
(I) The identification of assets and the extraction of their functional properties.
(II) The modeling of the assets as well as the relationships linking them. (III)
The identification of the risk of specific assets and the computation of the risk
propagation to the final software.

3.1 Property Analysis

Asset Identification. Sunset identifies assets based on four distinct categories,
namely software artifacts, code holders, distribution networks, and actors.

– Software Artifact. It represents any kind of software included or devel-
oped in the SSC. Sunset further discerns between (i) compiled software (e.g.,
binaries and pre-compiled libraries) and (ii) source code artifacts.

– Holder. This type of asset is responsible for storing and maintaining software
artifacts. A Holder can be further categorized in:
• Local Storage. It represents storage solutions that are not connected with

any management system. This category includes, for instance, a local
folder containing software artifacts.

• Version Control System (VCS). A VCS allows managing software artifacts
using a management system that supports code control features like ver-
sioning and tracking. The VCS kind of holder can be classified in remote
and local depending on its location.



286 G. Benedetti et al.

– Distribution Network. Also known as package managers, it includes ser-
vices and systems that allow the categorization, search, and distribution of
software artifacts. Typical distribution networks include Maven and PyPI,
which support the distribution of Java and Python libraries, respectively.
The majority of open and closed source projects take advantage of distribu-
tion networks to import software dependencies [13].

– Actor. Actors represent humans involved in the software supply chain. An
actor can be classified based on its privileges on the asset it is connected to,
i.e.:
• Maintainer. It has full access to the asset who is connected to. Moreover,

it is able to set privileges for other actors connected to the same asset.
• Contributor. It has restricted access to the asset who is connected to.

The identification of assets happens in the first stage of the workflow depicted
in Fig. 4. In particular, the methodology analyses the project files and their
content to detect the assets composing the software supply chain.

True

False
Code 

 Available
Retrieve Code

True

False

Origin
Identified

Advanced
Origin Search

Actors
Identification

Project
Analysis

Holder
Identification

Distribution
Network

Identification

Software
Artifact

Identification

Stage 1

Local Data
Analysis

Metadata
Analysis

Code Parsing

Remote Data
Analysis

Assets Related
Analysis

Open Source
Information

Analysis

Stage 2

False

TrueCompiled Decomplilation

Fig. 4. Property extraction workflow.

Assets belonging to the software artifact category are identified starting from
the entry file of the project. The methodology recursively identifies software arti-
facts via parsing the code files in the project. When Sunset is not able to match
a software artifact with the parsed source code, it tries to find a correspond-
ing artifact online (e.g., by searching for publicly available implementation of
the software artifact). If the methodology identifies multiple artifacts, it selects
the most exhaustive implementation (considering lines of code and last update
time, if available). Nevertheless, when this event happens, Sunset collects the
differences between artifact versions as evidence of possible attack vectors (e.g.,
typosquatting [42], i.e., trick users into downloading a malicious package by
squatting the name of a popular package).

The methodology identifies holders through the analysis of project files. VCSs
use the local file system to deal with code versioning (e.g., indexing files and con-
figuration files), then Sunset detects this class of holder through these fingerprint
files. In the case there is no local fingerprint, the methodology takes advantage of
software artifacts source code to explore available public repositories in order to



Alice in (Software Supply) Chains: Risk Identification and Evaluation 287

couple software artifacts to a VCS. When the methodology fails to associate soft-
ware artifacts to a VCS, it creates a local storage holder to contain the software
artifacts.

Programming languages of software artifacts defines the distribution net-
works involved in the SSC, i.e., a Python software artifact rely on PyPI, while
a rust program on Cargo. Sunset identifies also private distribution networks
searching for specific configurations in software artifact source code or configu-
ration files.

The methodology identifies the actors during the analysis of holders and
distribution networks. Indeed, actors interact with both of these categories of
assets. An actor interfaces with an asset through a virtual identity that differs
from its physical person. The methodology refers to this virtual identity to model
the actor asset.

Properties Extraction. The methodology extracts a different set of proper-
ties for each category of assets. The properties of interest are divided in two
categories, namely:

– Structural properties, which are oriented to the understanding of the struc-
tural composition of the asset. These properties provide information about
the structure and the quality of the asset in terms of usage and involvement
in the software supply chain.

– Security properties, which concern the security posture of the asset. They
provide information regarding possible flaws and entry points.

Each category contains different groups of properties, as detailed in Table 1.
Sunset extracts properties from assets during their identification. Depending

on the asset category, the methodology extracts the proper groups of properties.
The single properties of each group receive a quantitative evaluation, depending
on their characteristics and the availability of plugins to support the extraction,
e.g., a static code analyzer for security properties of software artifacts.

Similarly to the identification process, Sunset adopts a strategy to extract
properties based on the asset category. Stage 2 of the workflow (Fig. 4) depicts
the corresponding extraction workflow.

For software artifact assets, properties extraction consists of analyzing the
metadata, the source code (if available), and the result of SAST tools. In the
case of a compiled software artifact, instead, Sunset analyses the decompiled
code relying on state-of-the-art decompilation tools [17,23,25].

Assets belonging to the Holder and Distribution Network categories are ana-
lyzed by considering (i) the metadata located in the project (e.g., indexing files,
mirror files), (ii) the remote information (e.g., remote branches, pull requests,
versioning information), and (iii) the existence of known security issues on pub-
licly available vulnerability databases.

For the actor assets, the methodology takes advantage of the information
provided by the assets from which the actor has been obtained (e.g., contribu-
tion to the repository). The information gathered through the asset where the



288 G. Benedetti et al.

Table 1. Properties categories and groups divided per asset category.

Structural Security

Software artifact Conditional statements Buffers validation

Functions Input sanitization

Required user interactions Insecure patterns

Read and write operations

Holder Commits Security policies

Pull requests Community standards

Issues Known security issues

Workflows

Distribution network Mirrors Known security issues

Packages required

Actor Homepage OSINT results

Overall contributions Known malicious actions

Public repositories

Forks

actor contributes is integrated with the analysis of open-source information [7].
Different actors can be connected to a single physical person. Analyzing the
links bounding them to a physical person allows for a better understanding of
their involvement in the software supply chain. Thanks to this understanding, it
would be possible to capture information on potential threat actors. The iden-
tification of these links involves the use of state-of-the-art tools for the analysis
of personas [21,30].

3.2 Model Composition

The model composition phase (Fig. 3) allows for the building of a structured
representation of the software supply chain.

The generation of the model organizes the assets and their inter-dependencies
using a direct graph structure, where nodes represent assets and edges detail their
relations.

The final software is the central node of the model. This particular node has
only entering edges. The edges entering the node connect the final software to
the subgraphs containing the assets identified during the Asset Identification
phase. Figure 5 depicts the set of possible relationships between two assets.

Figure 6 depicts the model generated by the analysis and modeling phase of
the SSC of MyWebApp of Fig. 2.

The SSC model also supports the graphical plotting and manipulation using
state-of-the-art tools, e.g., [16]. The visual representation allows a high-level
overview of the SSC that can support maintenance tasks and preliminary security



Alice in (Software Supply) Chains: Risk Identification and Evaluation 289

Actor

Interacts

Holder

Imports

Distribution Network

Contributes

Software Artifact

Imports

Provides

Imports

Imports

Contributes

Contributes

Contributes

Modifies

Hosts

Fig. 5. Possible relationships among SSC asset categories.

assessments. For instance, the centrality of nodes [4] can be used to understand
which nodes have more influence w.r.t. the final software.

MyWebApp
PyPI

pallets

Flask
gunicorn

benoitc

Contributor1

Contributor319

Maintainer

DevSecLogin

Lib1

LibN

SW Art.

Lib1 LibN

Holder

HolderHolder

Actor

Actor

Actor

Contributor1

Contributor651

Actor

Actor

SW Art.

SW Art.

SW Art. SW Art.

SW Art.

Dist. Net.

os

SW Art.

glob

SW Art.

Fig. 6. Example of model representation.

3.3 Risk Identification

The Sunset methodology takes advantage of SSC model obtained in the model
composition phase to carry on risk identification. Risk identification concerns
searching and analyzing risk sources in the software supply chain. This phase
considers the risk generated on the single assets and its propagation through the
software supply chain. Figure 7 depicts the workflow for the risk identification
phase.



290 G. Benedetti et al.

Get Active
CWEs

For Each NodeSSC Model

Get Active
Attack Vectors

True

False

Software
Artifact

Get associated
CVEs

Compute Risk
Score

Assign AVs to
outgoing

relationships

Enrich Model with RIsk Data

Aggregate local
risk with

incoming risk

Get Risk from
parent nodes

Weakness Analysis

Attack Vector Analysis Risk Aggregation and
Propagation

Fig. 7. Risk analysis module workflow.

Sunset explores the model graph with a breadth-first search algorithm [6].
The exploration starts from the border of the graph to represent how the outer
assets’ risk impacts inner nodes and reaches the final software.

The methodology defines two types of analysis depending on the category of
the asset:

– Weakness analysis, for software artifacts.
– Attack Vector analysis, for holders, distribution networks, and actors.

Sunset relies on a Knowledge Base for the evaluation of weaknesses and attack
vectors. The knowledge base maps assets’ structural and security properties with
either a CWE or an attack vector (AV). Sunset considers all CWEs linked to
the pre-release phase, grouped in the CWE View 699 [38] and the set of attack
vectors listed by ENISA [11].

In detail, the knowledge base contains a list of first-order logic statements
evaluating structural properties (P ), security properties (S), and the presence of
specific attack vectors (AV ). Each property can be compared with a threshold
value (T ), joint or disjoint with other properties or predicates, and evaluated in
its presence or absence (� operator).

For example, the first expression in Listing 1.1 states that attack vector AVx

is enabled when both properties P1 and P2 are greater than their respective
critical values C1 and C2 and when the attack vector AVy is active. The second
statement in Listing 1.1 details how CWEz is enabled either when properties
P1 and P2 are greater than critical values C1 and C2 or when the attack vector
AVx is active. More detailed examples are presented in Listings 1.2 and 1.4.

1 . AVx “ñ (P1 ą C1) ^ (P2 ą C2) ^ AVy

2 . CWEz “ñ (P1 ą C1) ^ (P2 ą C2) _ AVx

Listing 1.1. Mapping rules of Sunset knowledge base.



Alice in (Software Supply) Chains: Risk Identification and Evaluation 291

Weakness Analysis. The weakness analysis leverages the CWE database, the
CVSS scoring system [12], and the properties extracted for the software artifacts.
Sunset considers all CWEs linked to the pre-release phase, grouped in the CWE
View 699 [38].

During the analysis of a software artifact asset, the methodology identifies
active CWEs. A CWE is active on an asset if it is included (or can be derived)
from a security property of the asset or from an attack vector. By verifying
asset properties and the attack vectors inherited from the connected edges, Sun-
set provides the list of active CWEs of the asset.

For example, the presence of conditional statements (Pcond) but the lack of
variable sanitization (Ssan) triggers the rule on CWE-478 [35] (lack of default
condition in switch statements) detailed in Listing 1.2.

CWE-478 “ñ Pcond ^ �Ssan

Listing 1.2. KB rule for CWE-478.

After the evaluation of active CWEs, Sunset proceeds with the definition of
the overall risk associated with the asset. For the computation, the methodology
retrieves all the Common Vulnerabilities Exposures (CVE) [33] grouped w.r.t.
a given CWE, i.e., the vulnerabilities linked to each CWE that are available
on public databases. For each CVE, Sunset extracts the corresponding CVSS
score [12] and uses it to compute the CVSS risk value of the asset.

In detail, we define Gx as the group of active CWEs on an asset X (1);
for each CWE in Gx, the methodology gathers the corresponding list of CVSS
vectors (Si), one for each CVE. Each Si contains L different metrics M (2). The
risk score of the CWE j (RCWEj ) is a new vector where each metric Ki is the
mean value of all the same metrics of each CVSS score contained in CWE j (3).
The overall score Rx of the asset is the max value among the set of RCWE (4).

(1) Gx “ {CWE1, ...,CWET }
(2) CWEj “ {S1, ...,SN} where Si “ {Mi1, ...,MiL}
(3) RCWEj

“ {K1, ...,KL} where Ki “ M1i`...`MNi

N
(4) Rx “ max {RCWE1 , ..., RCWET

}
Listing 1.3. Equations for computing the risk score of an asset.

Attack Vector Analysis. Attack vector analysis follows the same concept as
weaknesses analysis. In detail, Sunset identifies a set of active AVs insisting on an
asset X if and only if the functional and security properties allow their presence.
For the evaluation, the methodology exploits the rules defined in the knowledge
base.

For example, the asset X is susceptible to manipulation attacks (AVman) if
the asset X inherits the attack vector social engineering (AVse) from a linked
asset and the security property weak password (Swp) is below the threshold Tl,
according to the rule in Listing 1.4.



292 G. Benedetti et al.

AVman “ñ AVse ^ (Swp ă Tl)
Listing 1.4. KB rule for the manipulation attack vector.

Risk Aggregation and Propagation. Attack vectors and risk evaluations
propagate in the SSC model according to the interconnections among the differ-
ent assets. Weaknesses and attack vectors flow from the boundary of the SSC
model toward the final software. In this sense, a relationship between two assets
has two goals:

I. Carry attack vectors useful for the weakness analysis.
II. Transport the risk value obtained on connected assets.

Hence, the total risk on an asset consists of aggregating the risk value gen-
erated on the asset with the risk values inherited from inbound relationships.

In detail, Sunset starts the exploration of the SSC model from the border of
the final software SSC using a breadth-first search algorithm.

For each inbound connection, the methodology adds the risk score and the
attack vectors inherited from the parent node. Then it iterates the process for
each node until it finds the final software. On each step, Sunset updates the
weakness analysis and the AV analysis to match the new conditions.

Looking back at example in Fig. 2, the sources of risk of the MyWebApp are
the relationships incoming from the Dev/seclogin holder, the Std Libs software
artifacts, and the PyPI distribution network. Suppose that the methodology
reports a social engineering attack vector on the maintainer of Dev/seclogin. In
that case, such AV will be propagated on the holder and, consequently, in the
software artifact of the module and the final software.

4 Related Work

Both the industrial and scientific communities proposed several solutions to
increase the security of software [9]. Most of the activities focused mainly on
vulnerability analysis and software integrity.

Tools like the OWASP Dependency-Check [24], snyk [31], slscan [29], and
shhgit [8] provide the developer with detailed vulnerability reports of vulnerabil-
ity patterns and insecure dependencies. Also, the scientific community provided
several solutions to detect and mitigate software vulnerabilities, such as [14,19].

Another field of activities was devoted to ensuring the integrity assurance of
open-source software. Such works aim to prevent unauthorized modifications/-
tampering of the software during the development pipeline.

Two of the most recent industry proposal are SLSA [32] and Reproducible
builds [26]. Supply chain Levels for Software Artifacts (SLSA) is an end-to-
end framework to guarantee the integrity of dependencies all along the devel-
opment process. Through SLSA certifications, developers obtain information on



Alice in (Software Supply) Chains: Risk Identification and Evaluation 293

the integrity assurance a given artifact can offer. However, the certification pro-
cess requires an extended interaction with the developers and hardly copes with
the level of automation needed for the DevOps paradigm.

Reproducible builds [26], instead, is a collection of software development
processes that aims to standardize the build and compilation process in terms
of configurations and requisites. This approach enables maintainers to detect
if an attacker has compromised the building process by comparing the assets
generated during the compilation process.

Hence, Reproducible Builds focuses on the integrity compromise happening
in the build step. Weaknesses inserted in the software by mistake or intention-
ally are then considered a trusted part of the build. On the same approach,
the authors of LastPyMile [41] proposed a methodology to detect the differ-
ences between build artifacts of software packages and the respective source
code repository.

The aforementioned approaches might detect vulnerable dependencies and
insecure code and contribute to software packages’ integrity. Still, they hardly
cope with the root cause of the problem, the attack vector, and the affected asset
of the SSC, failing to mitigate the risk of new attack campaigns. Such lack of
control is particularly disruptive in complex software supply chains containing
thousands of assets, thereby limiting the benefits of adopting VA and integrity
solutions. Sunset is one of the first attempts to mitigate such pain for developers
and SSC maintainers.

5 Conclusion and Future Work

In this paper, we introduced Sunset, a new methodology to model software sup-
ply chains and evaluate their security risk and the detail of the single asset.
Sunset is not intended to substitute traditional VA and PT procedures or risk
management activities. The methodology, instead, aims to alleviate the burden
of maintaining a secure and updated SSC by providing a means to (i) evaluate
the risk of each asset and how it will influence the security posture of the final
software and (ii) identifies the sources of risk to prioritize mitigation activities.
Also, the evaluation of Sunset can be performed offline without impacting the
performance of the development process.

In future works, we plan to extend the methodology to cope with the cur-
rent limitations. First, we will enrich the type of assets and properties that can
be modeled with Sunset to support complex scenarios. Then, we will provide
an open-source prototype implementation of the methodology to test its appli-
cability and efficacy in tracing security vulnerabilities, and sources of risk in
real-world scenarios like mobile [3,22], CPS [15] and IoT [5], whose development
pipeline and threat model are well-known to our research group. The implemen-
tation will exploit both state-of-the-art tools (e.g., slscan [29] and COSMO [28]
to extract security properties) and ad-hoc heuristics (e.g., a module for detecting
GitHub software artifacts).



294 G. Benedetti et al.

References

1. Alberts, C.J., Dorofee, A.J., Creel, R., Ellison, R.J., Woody, C.: A systemic app-
roach for assessing software supply-chain risk. In: 2011 44th Hawaii International
Conference on System Sciences, Kauai, HI, pp. 1–8, January 2011. https://doi.org/
10.1109/HICSS.2011.36

2. Argon: 2021 software supply chain security report (2021). https://info.aquasec.
com/argon-supply-chain-attacks-study

3. Armando, A., Costa, G., Merlo, A., Verderame, L.: Enabling BYOD through secure
meta-market. In: Proceedings of the 2014 ACM Conference on Security and Privacy
in Wireless & Mobile Networks, WiSec 2014, pp. 219–230. Association for Com-
puting Machinery, New York (2014). https://doi.org/10.1145/2627393.2627410

4. Barabási, A.L.: Network Science. Cambridge University Press (2016). http://
networksciencebook.com/

5. Caputo, D., Verderame, L., Ranieri, A., Merlo, A., Caviglione, L.: Fine-hearing
google home: why silence will not protect your privacy. J. Wireless Mob. Netw.
Ubiquit. Comput. Dependable Appl., 35–53 (2020). https://doi.org/10.22667/
JOWUA.2020.03.31.035

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2017)

7. Cumming, A.: Open Source Intelligence (OSINT): Issues for Congress (2007)
8. Darkport Technologies Limited: shhgit. https://github.com/eth0izzle/shhgit
9. Dowd, M., McDonald, J., Schuh, J.: The Art of Software Security Assessment:

Identifying and Preventing Software Vulnerabilities. Pearson Education (2006)
10. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw. (3),

94–100 (2016). https://doi.org/10.1109/MS.2016.68
11. European Union Agency for Cybersecurity: ENISA Threat Landscape for Sup-

ply Chain Attacks. Publications Office, LU (2021). https://data.europa.eu/doi/
10.2824/168593

12. FIRST.ORG Inc.: CVSS. https://www.first.org/cvss/
13. Flynn, C.: PyPI Stats. https://pypistats.org/packages/ all
14. Ghaffarian, S.M., Shahriari, H.R.: Software vulnerability analysis and discovery

using machine-learning and data-mining techniques: a survey. ACM Comput. Surv.
(4) (2017). https://doi.org/10.1145/3092566

15. Gobbo, N., Merlo, A., Migliardi, M.: A denial of service attack to GSM networks
via attach procedure. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L.
(eds.) CD-ARES 2013. LNCS, vol. 8128, pp. 361–376. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40588-4 25

16. Graphviz Authors: Graphviz. https://graphviz.org/
17. Hex-Rays: Ida Decompiler. https://hex-rays.com/decompiler/
18. Kaloroumakis, P.E., Smith, M.J.: Toward a knowledge graph of cybersecurity coun-

termeasures (2021)
19. Liu, B., Shi, L., Cai, Z., Li, M.: Software vulnerability discovery techniques: a

survey. In: 2012 Fourth International Conference on Multimedia Information Net-
working and Security, pp. 152–156 (2012). https://doi.org/10.1109/MINES.2012.
202

20. Jackson, M.: Codecov supply chain breach - explained step by step. https://blog.
gitguardian.com/codecov-supply-chain-breach/

21. Maltego Technologies: Maltego. https://www.maltego.com/

https://doi.org/10.1109/HICSS.2011.36
https://doi.org/10.1109/HICSS.2011.36
https://info.aquasec.com/argon-supply-chain-attacks-study
https://info.aquasec.com/argon-supply-chain-attacks-study
https://doi.org/10.1145/2627393.2627410
http://networksciencebook.com/
http://networksciencebook.com/
https://doi.org/10.22667/JOWUA.2020.03.31.035
https://doi.org/10.22667/JOWUA.2020.03.31.035
https://github.com/eth0izzle/shhgit
https://doi.org/10.1109/MS.2016.68
https://data.europa.eu/doi/10.2824/168593
https://data.europa.eu/doi/10.2824/168593
https://www.first.org/cvss/
https://pypistats.org/packages/__all__
https://doi.org/10.1145/3092566
https://doi.org/10.1007/978-3-642-40588-4_25
https://graphviz.org/
https://hex-rays.com/decompiler/
https://doi.org/10.1109/MINES.2012.202
https://doi.org/10.1109/MINES.2012.202
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.maltego.com/


Alice in (Software Supply) Chains: Risk Identification and Evaluation 295

22. Migliardi, M., Merlo, A.: Improving energy efficiency in distributed intrusion detec-
tion systems. J. High Speed Netw. 3, 251–264 (2013). https://doi.org/10.3233/
JHS-130476

23. National Security Agency: Ghidra. https://ghidra-sre.org/
24. OWASP Foundation Inc.: OWASP dependency-check. https://owasp.org/www-

project-dependency-check/
25. radareorg: Radare2. https://rada.re/
26. ReproducibleBuilds: Reproduciblebuilds. https://reproducible-builds.org/
27. Revenera: The 2022 state of the software supply chain report (2022). https://info.

revenera.com/SCA-RPT-OSS-License-Compliance-2022/
28. Romdhana, A., Ceccato, M., Georgiu, G.C., Merlo, A., Tonella, P.: COSMO: code

coverage made easier for android. In: 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST), pp. 417–423 (2021). https://doi.org/
10.1109/ICST49551.2021.00053

29. ShiftLeftSecurity: SLScan. https://slscan.io/
30. Shodan: Shodan. https://www.shodan.io/
31. Snyk Limited: Snyk open source. https://snyk.io/
32. The Linux Foundation: SLSA. https://slsa.dev/
33. The MITRE Corporation: CVE. https://cve.mitre.org/
34. The MITRE Corporation: CWE-20: improper input validation. https://cwe.mitre.

org/data/definitions/20.html
35. The MITRE Corporation: CWE-478: missing default case in switch statement.

https://cwe.mitre.org/data/definitions/478.html
36. The MITRE Corporation: CWE-798: use of hard-coded credentials. https://cwe.

mitre.org/data/definitions/798.html
37. The MITRE Corporation: CWE-89: improper neutralization of special ele-

ments used in an SQL command (‘SQL Injection’). https://cwe.mitre.org/data/
definitions/89.html

38. The MITRE Corporation: CWE VIEW 699: software development. https://cwe.
mitre.org/data/definitions/699.html

39. The MITRE Corporation: MITRE ATT&CK. https://attack.mitre.org/
40. The MITRE Corporation: MITRE Common Weakness Enumeration. https://cwe.

mitre.org/
41. Vu, D.L., Massacci, F., Pashchenko, I., Plate, H., Sabetta, A.: LastPyMile: iden-

tifying the discrepancy between sources and packages. In: Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Athens Greece, pp. 780–792,
August 2021. https://doi.org/10.1145/3468264.3468592

42. Vu, D.L., Pashchenko, I., Massacci, F., Plate, H., Sabetta, A.: Typosquatting and
combosquatting attacks on the python ecosystem. In: 2020 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS PW), pp. 509–514 (2020).
https://doi.org/10.1109/EuroSPW51379.2020.00074

43. Yan, D., Niu, Y., Liu, K., Liu, Z., Liu, Z., Bissyandé, T.F.: Estimating the attack
surface from residual vulnerabilities in open source software supply chain. In: 2021
IEEE 21st International Conference on Software Quality, Reliability and Security
(QRS), pp. 493–502 (2021). https://doi.org/10.1109/QRS54544.2021.00060

44. Zampetti, F., Geremia, S., Bavota, G., Di Penta, M.: CI/CD pipelines evolution
and restructuring: a qualitative and quantitative study. In: 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 471–482 (2021).
https://doi.org/10.1109/ICSME52107.2021.00048

https://doi.org/10.3233/JHS-130476
https://doi.org/10.3233/JHS-130476
https://ghidra-sre.org/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://rada.re/
https://reproducible-builds.org/
https://info.revenera.com/SCA-RPT-OSS-License-Compliance-2022/
https://info.revenera.com/SCA-RPT-OSS-License-Compliance-2022/
https://doi.org/10.1109/ICST49551.2021.00053
https://doi.org/10.1109/ICST49551.2021.00053
https://slscan.io/
https://www.shodan.io/
https://snyk.io/
https://slsa.dev/
https://cve.mitre.org/
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/478.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://attack.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1109/EuroSPW51379.2020.00074
https://doi.org/10.1109/QRS54544.2021.00060
https://doi.org/10.1109/ICSME52107.2021.00048

	Alice in (Software Supply) Chains: Risk Identification and Evaluation
	1 Introduction
	2 Software Supply Chain
	2.1 Software Supply Chain Vulnerabilities and Attacks

	3 Sunset
	3.1 Property Analysis
	3.2 Model Composition
	3.3 Risk Identification

	4 Related Work
	5 Conclusion and Future Work
	References




