
A Preliminary Study of Privilege Life Cycle in Software Management Platform
Automation Workflows

Giacomo Benedetti
University of Genoa

Genoa, Italy
giacomo.benedetti@dibris.unige.it

Luca Verderame
University of Genoa

Genoa, Italy
luca.verderame@unige.it

Alessio Merlo
CASD - Centre for High Defense Studies

Rome, Italy
alessio.merlo@casd.difesa.it

Abstract—This paper focuses on the role of privileges in
automation workflows within modern software development
practices, which heavily rely on DevOps principles. Au-
tomation workflows, which are sets of automated software
management processes, have become essential to software
development and are integrated into software management
platforms such as GitHub, GitLab, and BitBucket. How-
ever, privileges are crucial in ensuring the security and
integrity of the software development process. This paper
aims to identify the phases in which privileges are involved
in automation workflows and analyze how these platforms
handle the privilege life cycle in automation workflows to
provide a better understanding of their security implications.
The security discussion highlighted in this analysis aims to
stimulate solutions and further research.

1. Introduction

Modern software development is based on the DevOps
development approach [15]. DevOps relies on a range of
tools to improve both the development phase (Dev), e.g.,
code management, and the operational phase (Ops), e.g.,
deployment, monitoring, and logging [33], [32]. These
tools help to ensure that software is delivered quickly,
reliably, and with minimal risk of errors or downtime. Au-
tomation tools (e.g., Jenkins [28]) have been instrumental
in sustaining the principles of DevOps over the years.

However, software management platforms recently in-
troduced automation workflows directly on their repos-
itories [30]. An automation workflow is a set of steps
that automate the management of software deployments,
updates, and other operations in a streamlined and con-
sistent manner. Automation workflows are designed to
autonomously execute a series of actions (i.e., a task)
when the developer invokes or responds to an event (i.e.,
a triggering condition).

Automation workflows on software management plat-
forms are a crucial component of the DevOps process, as
they help to automate and streamline the software delivery
pipeline. Indeed, the possibility of applying automation
without relying on external services pushed the commu-
nity to thrive on this feature [14].

Thus, workflows rapidly became an essential aspect of
modern software development practices affecting devel-
opment throughout the development process, from code
writing to release.

Privileges are crucial for automation workflows, as
they allow ensuring the security and integrity of the soft-

ware development process. Automation workflows involve
a range of tasks, such as building, testing, and deploying
software, that requires access to sensitive resources. Priv-
ileges determine a user or entity’s actions on a particular
resource. An entity is a non-human actor that can interact
with the software management platform, e.g., a cloud
application. Automation workflows can expose these re-
sources without appropriate privileges to unauthorized
access or modification, leading to serious security and
compliance issues, as discussed in [26], [38]. In particu-
lar, recent work on GitHub Workflows [10] highlighted
the importance of detecting privilege misconfigurations
in their security assessment. Also, the authors evaluated
more than 100k workflows discovering that 62% of them
do not follow the GitHub security guidelines regarding
permissions [20], thereby increasing the chance of attacks
against the repository resources, e.g., the code hosted in
the repository and the build process.

The industry leaders for software management plat-
forms are GitHub [18], GitLab [21], and BitBucket [1].
These software management platforms share many simi-
larities. However, their privileges and permissions man-
agement mechanisms differ in some aspects. Over the
year, the documentation for these mechanisms received
updates and patches. It grew stratified and sparse, making
obtaining the proper knowledge of managing privileges
challenging.

This paper aims to define a rationalization of the priv-
ilege system used by automation workflows. Defining the
privilege life cycle in the automation workflows enabled
us to categorize the fundamental steps involved in the
configuration, authentication, and resolution of privileges
during the life span of an automation workflow. We used
the privilege life cycle to investigate and compare the
different approaches to privilege management for automa-
tion workflows. Thanks to a clearer understanding of the
privilege management involvement in automation work-
flows, we discuss the advantages and the potential pitfalls
identified in the different approaches used on the software
management platforms.

Structure of the paper Section 2 describes the different
stages of the privilege life cycle and how privileges and
permissions are involved in automation workflows. In
Section 3, we analyze the privilege life cycle handling
of the three most widely used software management plat-
forms. In Section 4, we discuss the security implications
of privilege life cycle studied implementations. Section 5
presents related work regarding automation workflows in

21

2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2023, Giacomo Benedetti. Under license to IEEE.
DOI 10.1109/EuroSPW59978.2023.00007

20
23

 IE
EE

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

W
or

ks
ho

ps
 (E

ur
oS

&
PW

) |
 9

79
-8

-3
50

3-
27

20
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

Eu
ro

SP
W

59
97

8.
20

23
.0

00
07

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 11,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.

software management platforms. Finally, we conclude this
work in Section 6.

2. Privilege Life Cycle in Automation Work-
flows

Software management platforms allow the creation,
storage, and management of repositories. Software devel-
opers can store and manage a project’s code and related
assets in a repository. Repositories provide a structured
way to organize and version control the code and assets,
enabling collaboration between developers working on the
same project. A repository can be created by a single user,
namely the Owner, or by an Organization, i.e., a business-
shared account. The repository owner allows other users
to access the repository by assigning them specific privi-
leges mapped as roles. According to the given role, other
users can access privileged operations, e.g., writing on
the repository or creating automation procedures called
automation workflows.

An automation workflow is a procedure to automate
tasks such as building, testing, and deploying software
packages. Software management platforms enable devel-
opers to define workflows as a series of steps or tasks that
will be executed on the repository. Because of its nature,
an automation workflow can interact with contents hosted
on the repository and elements external to the repository
environment, e.g., container image repositories. All the
operations affecting the repository are managed through
the software management platform APIs. An automation
workflow is usually described in one or more specification
files written with human-readable data serialization lan-
guages (e.g., YAML [9]) or other programming languages
like JavaScript and TypeScript.

Software management platforms offer various methods
to configure privileges to automation workflow, e.g., with
user roles, repository settings, or directly on automation
workflow specification files. Privileges are expressed as
permissions that can be granted to specific users or groups.
Users’ access to repository resources is regulated with per-
missions. Users with the necessary privileges can define
permissions for other users and entities for automation
workflow execution.

Permissions define both the capability for a user to
trigger an automation workflow and which actions the
workflow can execute. Indeed, a common approach is to
run the workflow with the same privileges as the user that
triggered the execution.

However, these privileges can be elevated or restricted
depending on the other configuration methods available.
For example, a user A with reading permission triggers the
workflow B. However, a task in B requires the workflow to
access the repository with write permission. The workflow
will execute correctly if and only if the developer of
B has included in the workflow specification file the
write permission. If this is the case, B inherits the read
permission from A and the write permission directly from
its specification.

In our analysis, we modeled the involvement of priv-
ileges and permissions in the automation workflow life
span with a life cycle composed of three different stages,
i.e., privilege configuration, automation workflow trigger-
ing, and privilege resolution. Table 1 lists the stages and

the operations happening in each stage. The rest of this
section details the resulting life cycle.

Stages Operations

(A) Privilege Configuration
(A.1) Roles configuration
(A.2) Permissions definition

(B) Automation Workflow Triggering
(B.1) Trigger point stimulation
(B.2) Authentication for triggering

(C) Privilege Resolution (C.1) Permissions resolution

TABLE 1. STAGES OF PRIVILEGE LIFE CYCLE IN AUTOMATION

WORKFLOWS.

2.1. Privilege Configuration

The first stage of the privilege life cycle deals with
the configuration of privileges. An automation workflow
executes successfully only if it has the set of permissions
necessary to (i) invoke the API provided by the software
management platform and (ii) access the repository re-
sources.

Depending on the software management platform, per-
missions and privileges can be defined:

• outside the automation workflow. This approach re-
lies on the concept of role. A role grants privileges
associated with a set of permissions. Software man-
agement platforms allow dealing with roles at differ-
ent levels of granularity, e.g., organization, groups of
repositories, and single repositories.

• inside the automation workflow. In this case, devel-
opers can directly define permissions in the specifi-
cation file that apply to the workflow or event limited
to specific parts (e.g., at a job or step level).

In both ways, privileges granularity is an essential as-
pect in defining permissions. It depends on the specificity
of resources; the more a resource is specific to a scope,
the more the permission can be fine-grained.

During this stage, a developer should evaluate the
expected automation workflow goals to understand which
resources are needed by the workflow. A developer can
obtain the required knowledge through the software man-
agement platform documentation. In detail, it needs to
understand how the software management platform (i)
manages privilege roles, (ii) handles permissions and re-
sources, and (iii) provides methods to modify privileges
of workflows.

2.2. Automation Workflow Triggering

The automation workflow triggering stage regards
identifying the starting conditions of automation work-
flows. The starting conditions can be divided into event-
driven triggers and manual triggers.

Event-driven triggers collect all the events affecting
the repository and its configuration. Those events include,
for example, push and pull requests, issues opening, and
timed events. In this case, the workflow activation depends
on the privileges and permissions required for a user or
entity to fire one of its triggering events successfully. For
example, an automation workflow triggered by a push
event needs a user or entity with enough permissions to
perform the push on the repository.

22

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 11,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.

Manual triggers allow users and entities to start an au-
tomation workflow on-demand. In this case, the successful
start of the automation workflow depends on the privileges
of the user or entity to access the workflow. Software
management platforms use tokens to authenticate users
and entities on the repositories and to determine their
privileges. The most common tokens are user tokens and
access tokens.

User tokens establish the user’s identity during the
automation workflow execution and match the permissions
granted to the user or entity. Once authenticated, the
automation workflows inherit the permissions granted to
the user.

Access tokens, on the other hand, are specific to
individual repositories and are single-purpose. They grant
the permissions that were assigned at the time of their
creation.

The permissions contained in the tokens are inherited
by the workflow unless overwritten by the permissions
defined directly in the workflow specification file.

In this stage, the developer should check (i) the starting
conditions the software management platform supports,
(ii) the available means of authentications, and (iii) how
the workflow inherits or overwrites the permissions of the
token.

2.3. Privilege Resolution

The pipeline’s user or entity is authenticated and au-
thorized to start the workflow during the triggering stage.
The running automation workflow then interacts with the
platform to access the resources required to execute the
workflow steps using the available APIs.

The platform evaluates the permissions of the authen-
ticated user or entity to determine whether they have the
necessary rights to access the requested resources. The
resolution process is based on the policies adopted by the
platform, which define the rules and criteria for granting
or denying access to resources.

The policies implemented by the platform dictate the
precedence order of permission levels. The evaluation
process may involve multiple levels of permissions. The
platform evaluates each permission level in the order
defined by the policies to determine the level of access
granted to the user or entity that triggered the pipeline.

In this stage, it is necessary to understand how the
software management platform applies privilege resolu-
tion, considering precedence orders and granting access
to resources.

3. Software Management Platforms and their
approaches to privilege-granting

Software management platforms provide methods for
managing the privilege life cycle in automation workflows.
This section analyzes the privilege life cycle management
for GitHub, Gitlab, and BitBucket software management
platforms.

3.1. GitHub

GitHub provides GitHub Actions [12], [19] as au-
tomation technology on its platform. GitHub Actions was

released in 2019 and gained attention because of its work-
flow definition and usage flexibility. A workflow is defined
by a YAML file containing a set of operations called
jobs. Each job will execute a sequence of tasks called
steps. GitHub Actions also support the use and integration
of external workflows, called reusable workflows, which
allow developers to integrate third-party automation work-
flows to execute already defined jobs. Reusable workflows
can be defined using YAML, JavaScript/TypeScript, or
Docker.

(A.1) Roles configuration. GitHub distinguishes be-
tween personal repositories and organization-managed
repositories. Personal repositories have only two roles: (i)
the owner and (ii) collaborators. Organization-managed
repositories, instead, have multiple roles that are (from
the least privileged to the most privileged): (i) read, (ii)
triage, (iii) write, (iv) maintain, and (v) admin (see Ta-
ble 2). Additional roles can be created with the Enterprise
plan offered by GitHub, allowing for a more granular
permissions control for roles. Organizations can set base
permissions for all organization members. Base permis-
sions are automatically granted to users when added to
the organization.

(A.2) Permissions definition. GitHub organizes repos-
itories in scopes managing specific resources (e.g., file
resources are in the contents scope), as reported in Table 3.

GitHub allows configuring workflow permissions over
GitHub resource scopes according to two privilege levels,
i.e., restrictive and permissive.

The former grants read permissions in the repository
for the contents, and packages scopes only to the automa-
tion workflow. The permissive privilege level, instead,
grants read and write permissions over all repository
scopes.

More granular permissions can be declared in the
workflow specification file. Scopes and corresponding per-
mission values are declared in the workflow specification
file through the permissions keyword.

Possible permission values for scopes are read, write,
and none. The read value provides access to the resource.
The write value enables the user to modify the resource.
The none value disables all activities on the resource.

The permissions can be specified at workflow and job
levels inside the workflow specification file, reducing the
permission scope over the resource even more.

(B.1) Triggering points stimulation. GitHub Actions
workflows support different types of triggers. Trigger-
ing events can be defined for an entire workflow inside
the workflow specification file. In detail, there are 36
possible events [17] that can trigger a workflow. Fil-
tering events depending on operations (e.g., creation of
issues event) and branches (e.g., push on specific branch)
is also possible. Manual triggering is enabled through
a specific event, i.e., workflow_dispatch. Automa-
tion workflows triggered by the workflow_dispatch
event starts when a user or an entity requests a specific
API endpoint associated with the workflow. Workflow
triggering can also be scheduled using the crontab
syntax [16].

(B.2) Authentication for triggering. The user or entity
needs to authenticate on GitHub to trigger an automation
workflow to allow the platform to evaluate the possession
of the required privileges to fire a starting event. This

23

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 11,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.

GitLab GitHub BitBucket
Role Description Role Description Role Description

Owner

The Owner of a GitLab project
or group has full access to
all features and settings, including
the ability to delete the
project or group.

Owner

The Owner of a GitHub
repository has full access to
all features and
settings, including the ability
to transfer or delete the
repository.

Admin

Users with this permission have
full control over the repository,
including the ability to create
and delete branches, tags,
and pull requests, and
to modify repository settings.

Maintainer

Maintainers have similar
access to Owners,
but they cannot delete
the project or group.

Collaborator

Collaborators have similar
access to Owners,
but they cannot transfer
or delete the repository.
This role is available only for
organization level.

Create repository

Users with this permission
can create new repositories
within a project and become the
Owner of those repositories.
This role is available only for
project level.

Developer

Developers have read and
write access to the code,
but they cannot modify
project settings or invite others
to the project.

Write

Users with write access can
make changes to the repository,
such as pushing commits and
creating branches, but they
cannot modify the repository’s
settings or add collaborators.

Write

Users with this permission can
make changes to the repository,
including creating and deleting
branches and tags, and
creating and
merging pull requests.

Triage

Users with triage access have
the ability to manage issues and
pull requests, such as assigning
labels and milestones,
but they cannot make changes
to the repository’s code or settings.

Reporter

Reporters have read-only
access to the project, and
can view issues,
merge requests, and code,
but cannot make any changes.

Guest

Guests have limited read-only
access to the project,
and can only view
issues and merge requests that
have been explicitly shared
with them.

Read
Users with read access can
view the repository’s contents,
but they cannot make any changes.

Read

Users with this permission can
view the repository
and its contents,
including code, issues, and
pull requests, but cannot
make any changes.

Anonymous

Anonymous users have read-only
access to the project,
but do not need to be
logged in to view it.
This role is
typically used for
public projects
that do not require
authentication.

None
Users with this permission have
no access to the repository.

TABLE 2. COMPARISON OF PRIVILEGE ROLES ON SOFTWARE MANAGEMENT PLATFORMS.

policy also applies to manual triggers because they are
mapped as a specific event by the GitHub platform (i.e.,
workflow_dispatch).

The authentication to events is managed through two
types of access tokens, i.e., the user token and the fine-
grained access token. The former is associated with the
user’s role, and thus, it inherits the privileges related to
her. The latter, instead, are tokens containing permissions
defined during their creation.

(C.1) Permissions resolution. Once the workflow has
been triggered, GitHub computes the privileges involved
in the run. This activity considers all the permissions
specified in the privilege configuration stage.

In detail, the workflow permissions are initially set to
the base permissions declared in the repository settings
(i.e., restrictive or permissive mode). Base permissions
can be elevated or restricted by permissions defined in
the automation workflow specification file. Hence, GitHub
grants the finest-grained permissions defined in the privi-
lege configuration stage. For example, a workflow needs
to push changes to a branch in your repository. Still, the
base permissions are set to restrictive mode, allowing the
workflow only to read the repository content. In this case,
it is necessary to elevate the permissions granted to the

automation workflow during its execution. To do so, it is
possible to declare such higher permissions directly in the
automation workflow specification file.

3.2. GitLab

GitLab automation technology takes the name of
CI/CD pipelines [24]. A CI/CD pipeline workflow com-
prises stages and jobs. Stages usually represent develop-
ment pipeline phases (e.g., build, production, test). Jobs
represent the action to be taken on the repository. Stages
are executed sequentially, and their order is defined at the
beginning of the workflow. When all jobs in the stage
succeed, the workflow moves to the next stage.

A job is composed of sequential bash commands. A
runner executes these commands using the repository root
as the working directory.

GitLab can be installed on-premises on personal
servers. For this reason, permissions can be granted at
three levels of granularity: instance-wide (i.e., the GitLab
instance on the server), group, or project level.

(A.1) Roles configuration. GitLab applies a role-based
authorization policy. It defines five roles, from the least
privileged to the full privileged: (i) Guest, (ii) Reporter,
(iii) Developer, (iv) Maintainer, (v) Owner (see Table 2).

24

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 11,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.

Scope Description

actions

Grants permission to access the Actions API,
including the ability to create and manage secrets.
The read permission allows reading Actions metadata
and logs, while the write permission allows
starting and canceling workflows and
approving and rejecting workflow runs.

checks
Grants permission to read and write check runs
and check suites for a repository.

contents
Grants permission to read and write repository
contents, including files and directories.

deployments
Grants permission to read and write repository
deployments.

id-token
Grants permission to read and write ID tokens
for a repository, which can be used to authenticate
with GitHub APIs.

issues
Grants permission to read and write issues
for a repository.

discussions
Grants permission to read and write discussions
for a repository.

packages
Grants permission to read and write packages
within a repository or organization.

pages
Grants permission to read and write
GitHub Pages for a repository.

pull-requests
Grants permission to read and write
pull requests for a repository.

repository-projects
Grants permission to read and write
repository projects for a repository.

security-events
Grants permission to read and write
security events for a repository.

statuses
Grants permission to read and write
commit statuses for a repository.

TABLE 3. DESCRIPTIONS OF AVAILABLE SCOPES FOR PERMISSIONS

IN GITHUB ACTIONS.

Moreover, GitLab has a special role, the Administrator.
This is the sole role able to deal with the management of
the GitLab platform instance.

(A.2) Permissions definition. Permissions can be de-
fined through the GitLab settings. Roles enabled for per-
mission granting depend on the granularity level. Instance-
wide permissions and privileges can be managed only by
the Owner role. The Owner and Maintainer roles deal
with group permissions, while the Owner, Maintainer, and
Developer roles can manage project permissions.

Project owners can configure more granular permis-
sions for automation workflow execution using Protected
Branches and Protected Tags. These settings allow project
owners to restrict automation workflow execution for cer-
tain branches or tags to specific users or groups with
defined permission levels. Moreover, it is possible to
modify project-level permissions scope for automation
workflows. In particular, the public pipelines and pipeline
visibility options change the visibility of workflows for
low-privilege roles.

GitLab does not allow managing permissions in the
workflow definition file, as GitHub does. Then, automa-
tion workflows only rely on the user role granted during
this phase.

(B.1) Triggering point stimulation. GitLab automa-
tion workflows are triggered by push and merge request1

events by default. Also, it is possible to configure ad-
ditional triggering events for CI/CD pipelines through
dedicated webhooks [23]. Thanks to such a mechanism,
GitLab provides a triggering-by-event approach similar to
the one offered by GitHub. Webhooks can also be involved
in the manual triggering of automation workflows. The
webhook URL can be embedded in external services,
integrating the automation workflow. Moreover, GitLab

1. equivalent to pull request in GitHub

API provides specific endpoints for automation workflow
triggering.

(B.2) Authentication for triggering. Users or entities
triggering a workflow with an API call have to include
an access token. The token is evaluated to authenticate
the user or entity, and the workflow inherits permissions
associated with the token during execution.

GitLab enables automation workflow triggering
through trigger tokens. These are single-purpose tokens
that can be used to trigger a workflow with specific
permissions.

Using trigger tokens, users can initiate workflow ex-
ecution without requiring specific roles or permissions.
This feature helps integrate automation workflow with
external services or scripts. It allows these services to
trigger the workflow without requiring full access to the
GitLab project.

(C.1) Permissions resolution. GitLab evaluates priv-
ileges based on the membership relation [22]. Hence,
the memberships to specific groups and projects play a
crucial role in defining which permissions the automation
workflow has. The precedence of permissions can be
summarized in the following four points:

• Access level precedence. If a user is granted ac-
cess directly at a higher access level than her group
membership, then the higher access level takes prece-
dence.

• Higher access levels precedence. If a user has been
granted multiple access levels explicitly, then the
highest access level takes precedence.

• Inherited access levels precedence (over no access).
If a user has access to a project or group through
inheritance, such as being a group member with
access, then that access level takes precedence over
having no access.

• Narrower access levels precedence (over broader ac-
cess levels): if a user has been granted access at
different levels of granularity, such as access to a spe-
cific project versus access to all projects in a group,
then the more specific access level takes precedence.

The permissions evaluation policy guarantees users the
most permissive access level possible, considering their
roles.

3.3. BitBucket

BitBucket Pipelines is a continuous integration and
deployment service built into the BitBucket platform. It al-
lows developers to automate their code’s building, testing,
and deployment. Pipelines use YAML configuration files
to define workflows and support a range of programming
languages and tools. It integrates with other Atlassian [6]
products such as Jira [7] and can also be extended through
third-party plugins [8]. Pipelines offer teams a flexible and
scalable solution to streamline their development process
and improve their productivity.

As for GitLab, Users can interact with three levels,
so privileges are granted on three levels of granularity:
global, project, and repository. The global level concerns
the BitBucket platform instance, while projects are groups
of repositories.

(A.1) Roles configuration. BitBucket provides roles at
the global level, the project level, and the repository level.

25

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 11,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.

Global-level privileges deal with management activities on
the BitBucket instance, like creating projects and manag-
ing users and groups of users. These roles are, from the
least privileged to the full privileged: (i) BitBucket User,
(ii) Project Creator, (iii) Admin, and (iv) System Admin.

Concerning the project and repository levels, Bit-
Bucket allows the management of privileges directly as-
sociated with permissions. In detail, the permissions that
can be associated with a user are, from the least privileged
to the full privileged: (i) Read, (ii) write, and (iii) Admin
(see Table 2).

(A.2) Permissions definition. Permissions can be de-
fined through the BitBucket settings. This activity is re-
stricted to the Admin role. An Admin user carries on the
permissions granting activity for the scope of its role (i.e.,
a repository Admin manages permissions only for the
repository, while a project Admin manages permissions
for all the repositories in the project).

More granular permissions can be defined through the
use of these features: Deployment permission options [5],
deployment variables [4], and branch permissions [2].

The Deployment permission options feature provides
two options. With Admin restrictions, repository owners
can set privileges to trigger a deployment pipeline only for
trusted users. With this feature, users need high-privilege
roles to trigger critical pipelines that could accidentally or
intentionally deploy malicious or buggy code into produc-
tion. Branch restrictions enable controlling deployment to
critical environments, like production. Repository owners
specify the branches allowed to deploy to production. This
feature prevents branches requiring fewer privileges to
interact with them from deploying their content in critical
environments.

Securing deployment variables prevents critical data
from being stolen from execution logs during pipeline
execution. Apart from the execution logs, the only place
where deployment variables are available for displaying is
in the repository settings. BitBucket imposes users to have
at least the Admin role to access this repository section.

Using branch permissions, repository owners can set
pipeline restrictions on specific branches. This feature
prevents changes to the branch content and itself (e.g.,
deleting the branch). The permissions can be set on the
branch at different granularity. Permissions can be set on
branch types (e.g., development and production branches)
or branch patterns (i.e., branches identified by regular
expressions on their name).

Bitbucket Pipelines does not currently include access
control as a configurable option in the automation work-
flow specification file.

(B.1) Triggering point stimulation. BitBucket Pipelines
defines start conditions for automation workflows [3]. In
detail, a pipeline can be triggered: (i) when a commit is
pushed to any branch (default), (ii) when a commit is
pushed to specific branches, (iii) when a pull request is
created or updated and targeting specific branches, (iv)
when a tag is created, (v) or manually by the user. (i) to
(iv) are triggers by event.

BitBucket Pipelines does not allow the definition of
other events for the automation workflows triggering.
Automation workflows can be manually triggered when
they present the custom property in their body. This
property is comparable to the workflow_dispatch

event on GitHub. Then, requesting a specific BitBucket
API endpoint, the workflow is triggered.

(B.2) Authentication for triggering. BitBucket relies
on user access tokens for authentication. The automation
workflow runs with the permissions granted to the user
and hence to the token. Because of the triggering events
and the direct triggering policies, a user needs at least
the permissions to write on the repository to initiate an
automation workflow.

(C.1) Permissions resolution. In BitBucket Pipelines,
permissions for automation workflow execution are deter-
mined by the permissions assigned to users and groups
within the repository. If there is a conflict or overlap in
permissions between different users or groups, BitBucket
will prioritize the access level with the higher permission.

For example, suppose a user is a member of mul-
tiple user groups within the repository, and each group
has different access levels. In that case, BitBucket will
use the group’s access level with the highest permission
level to determine the user’s access level during pipeline
execution.

4. Discussion

Attacks targeting code repositories exploiting automa-
tion workflows are a real-world problem, as the scientific
and industrial community pointed out e.g., in [10], [31],
[34]. Although privilege management strategies cannot
prevent these attacks as a whole, the role of permissions
is mandatory for attack mitigation and prevention.

The introduction of role-based authentication and per-
missions by software management platforms aims to re-
duce the probability of triggering and exploiting vulner-
abilities in automation workflows. Although, the task of
granting privileges and roles to users is entirely transferred
to the repository’s owners and the workflows’ developers.
This is a critical task, and the time and competencies
required to deal with repositories with many contributors
should be more manageable.

All software management platforms support the spec-
ification of fine-grained privileges to mitigate privilege
misuse. This allows developers to define the smallest
number of resources involved in the privilege and the
permissions to be granted.

Our analysis shows that the platform offering the
finest granularity of permissions is GitHub. In particular,
GitHub allows developers to define permission directly in
the automation workflow specification file. This approach
has two main implications. First, it breaks the separation
between privileges management and automation workflow
definition, shifting responsibilities to the workflow creator.
Then, it provides a public mapping between resources
and permission, enhancing the visibility of resources and
permissions involved in the automation workflow. The
sole use of roles for privilege management blurs the un-
derstanding of permissions involved in automation work-
flows.

Relying only on roles, a user role has to be elevated to
guarantee the expected results from an automation work-
flow. This approach overcomes potential malfunction in
the automation workflow. However, because of the coarse
granularity of roles, the elevation of the role grants access
to more resources than the ones necessary to execute the

26

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 11,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.

automation workflow. Consequently, this overprivileged
user can access a larger attack surface. GitLab and Bit-
Bucket apply this approach to their automation workflows.

Software management platforms implement reposito-
ries groups for privileges, roles, and users. This feature
enables the transferability of user privileges from higher
levels, i.e., the group, to lower levels, i.e., the single
repository. This process adds a layer of complexity to the
privilege resolution phase. Thus, additional awareness is
required during the privilege configuration phase to avoid
unexpected overprivileged users. Complex membership
mechanisms, such as the one implemented by GitLab [22],
make tracking the inheritance of privileges among reposi-
tories, groups, and projects difficult. This lack of visibility
can make detecting and responding to security incidents
challenging.

Moreover, as visible in Table 2, we notice that the
distribution of roles on software management platforms is
not uniform2. For example, BitBucket tends to have more
highly privileged roles; GitHub, outside of organizations,
has just two highly privileged roles. The lack of low and
intermediate roles can lead to more highly privileged users
causing security concerns.

Overall, from this study, we argue the need for a
security-first approach to privilege management on soft-
ware management platforms.

This lack is highlighted by the missing strategies to
identify potential flaws from misconfigured privileges and
permissions. Thus, all three software management plat-
form documentation recommend achieving the principle of
least privilege for automation workflow execution. How-
ever, no mechanism exists to help or force users to obtain
such a principle. In particular, the privilege configuration
and the privilege resolution phases could integrate pro-
cedures to verify and even enforce the principle of least
privilege or at least control over permissions.

5. Related Work

Software management platforms and automation
workflows gathered attention in the last years. In partic-
ular, GitHub with its GitHub Actions and GitLab with
the CI/CD Pipelines. The advantage of automation work-
flows concerning their use for pull request management
has been pointed out in [36], [37]. Works as [30], [13],
[14], [35] studied the adoption, involvement, and evolution
of automation workflows in software development. Au-
tomation workflows have also been analyzed referring to
specific research fields [29], [11]. The study in [25] reports
statistics on how the usage decrease of CI services, like
Travis CI [27], coincides with the rise of GitHub Actions
that, in eighteen months, became the dominant automation
technology.

The variety of automation workflow applications and
their growing adoption arose interest in the security com-
munity. In particular, the authors in [10] provided a
methodology for the security assessment of GitHub Ac-
tions and conducted an in-the-wild assessment of GitHub
Action workflows to demonstrate the presence of several
security issues in public GitHub repositories. In [31],

2. We use a blank space when there is not a corresponding role on a
different platform.

authors analyzed the security of GitHub Actions and other
CI/CD automation pipelines by conducting an empirical
assessment of automation workflows. Both works unveil
the presence of potential misconfigurations in the privi-
leges of automation workflows.

However, to the best of our knowledge, our work
represents the first rationalization of privilege handling
for automation workflows on the three major software
management platforms.

6. Conclusion

In this work, we defined the privilege life cycle in
automation workflows. We investigate how software man-
agement platforms implement the steps of the life cy-
cle. This analysis highlighted how the methods used by
software management platforms are similar under specific
aspects. For example, platforms are coherent in triggering
automation workflows, relying on access tokens and APIs.
Although significant differences have been identified. For
example, the involvement of privileged roles in the au-
tomation workflows. From a security point of view, im-
provements are necessary to guarantee a stronger security
position. In particular, the complexity and heterogeneity of
privilege management mechanisms and the lack of proper
documentation support increase the probability of security
violations related to misconfiguration and over privilege.

Security should be more central during the privilege
life cycle in automation workflows. In particular, the
privilege configuration stage of the privilege life cycle
should contain compliance verification and enforcement
methods. This paper aims to encourage the discussion on
privilege management on software management platforms,
focusing on automation workflows. The significant advan-
tages of automation workflows on software management
platforms risk being dangerous without proper privilege
management methodologies.

References

[1] Atlassian. Bitbucket. https://bitbucket.org. [Online; accessed 10-
march-2023].

[2] Atlassian. Branch permissions. https://support.atlassian.com/
bitbucket-cloud/docs/use-branch-permissions/. [Online; accessed
10-march-2023].

[3] Atlassian. Pipeline start conditions. https://support.atlassian.
com/bitbucket-cloud/\-docs/\-pipeline-start-conditions/. [Online;
accessed 10-march-2023].

[4] Atlassian. Variables and secrets: Bitbucket cloud. https://support.
atlassian.com/bitbucket-cloud/docs/variables-and-secrets/. [On-
line; accessed 10-march-2023].

[5] Atlassian. Deployment permissions now available
in bitbucket pipelines. https://bitbucket.org/blog/
deployment-permissions-now-available-in-bitbucket-pipelines,
Dec 2022.

[6] Atlassian, Inc. Atlassian. https://www.atlassian.com. [Online;
accessed 10-march-2023].

[7] Atlassian, Inc. Jira. https://www.atlassian.com/software/jira. [On-
line; accessed 10-march-2023].

[8] Atlassian, Inc. Jira. https://bitbucket.org/product/features/pipelines/-
integrations. [Online; accessed 10-march-2023].

[9] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t
markup language (yaml™) version 1.1. Working Draft 2008, 5:11,
2009.

27

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 11,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.

[10] Giacomo Benedetti, Luca Verderame, and Alessio Merlo. Auto-
matic security assessment of github actions workflows. In Pro-
ceedings of the 2022 ACM Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses, SCORED’22, page
37–45, New York, NY, USA, 2022. Association for Computing
Machinery.

[11] Fabio Calefato, Filippo Lanubile, and Luigi Quaranta. A prelimi-
nary investigation of mlops practices in github. In Proceedings of
the 16th ACM / IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM ’22, page 283–288,
New York, NY, USA, 2022. Association for Computing Machinery.

[12] Chaminda Chandrasekara and Pushpa Herath. Introduction to
GitHub Actions, pages 1–8. Apress, Berkeley, CA, 2021.

[13] Tingting Chen, Yang Zhang, Shu Chen, Tao Wang, and Yiwen
Wu. Let’s supercharge the workflows: An empirical study of github
actions. In 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security Companion (QRS-C), pages 01–
10, 2021.

[14] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi
Golzadeh. On the use of github actions in software development
repositories. In 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 235–245, 2022.

[15] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas
Serrano. Devops. IEEE Software, 33(3):94–100, 2016.

[16] Free Software Foundation. Crontab. https://pubs.opengroup.org/
onlinepubs/9699919799/utilities/\-crontab.html. [Online; accessed
10-march-2023].

[17] GitHub, Inc. Events that trigger workflows.
https://docs.github.com/en/actions/using-workflows/events-that-
trigger-workflows. [Online; accessed 10-march-2023].

[18] GitHub, Inc. Github. https://github.com. [Online; accessed 10-
march-2023].

[19] GitHub, Inc. Github actions. https://docs.github.com/en/actions.
[Online; accessed 10-march-2023].

[20] GitHub, Inc. Security hardening for github actions.
https://docs.github.com/en/actions/security-guides/security-
hardening-for-github-actions. [Online; accessed 10-march-2023].

[21] GitLab B.V. Gitlab. https://gitlab.com. [Online; accessed 10-march-
2023].

[22] GitLab B.V. Gitlab - members of a project. https://docs.gitlab.com/
ee/user/project/members/index.html. [Online; accessed 10-march-
2023].

[23] GitLab B.V. Gitlab - webhooks. https://docs.gitlab.com/ee/user/
project/integrations/webhooks.html. [Online; accessed 10-march-
2023].

[24] GitLab B.V. Gitlab ci/cd pipelines. https://docs.gitlab.com/ee/ci/
pipelines/. [Online; accessed 10-march-2023].

[25] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the rise
and fall of ci services in github. In 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 662–672, 2022.

[26] Qingyuan Gong, Jiayun Zhang, Yang Chen, Qi Li, Yu Xiao, Xin
Wang, and Pan Hui. Detecting malicious accounts in online devel-
oper communities using deep learning. In Proceedings of the 28th
ACM International Conference on Information and Knowledge
Management, CIKM ’19, page 1251–1260, New York, NY, USA,
2019. Association for Computing Machinery.

[27] Idera, Inc. Travis ci. https://www.travis-ci.com/. [Online; accessed
10-march-2023].

[28] Paul Jenkins and Jean Cassou. Jenkins. Gerd Hatje, 1963.

[29] Albert Y. Kim, Valentine Herrmann, Ross Barreto, Brianna Calkins,
Erika Gonzalez-Akre, Daniel J. Johnson, Jennifer A. Jordan, Lukas
Magee, Ian R. McGregor, Nicolle Montero, Karl Novak, Teagan
Rogers, Jessica Shue, and Kristina J. Anderson-Teixeira. Imple-
menting github actions continuous integration to reduce error rates
in ecological data collection. Methods in Ecology and Evolution,
13(11):2572–2585, 2022.

[30] Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa, and
Christoph Treude. How do software developers use github actions
to automate their workflows? In 2021 IEEE/ACM 18th Interna-
tional Conference on Mining Software Repositories (MSR), pages
420–431, 2021.

[31] Igibek Koishybayev, Aleksandr Nahapetyan, Raima Zachariah, Sid-
dharth Muralee, Bradley Reaves, Alexandros Kapravelos, and Ar-
avind Machiry. Characterizing the security of github CI workflows.
In 31st USENIX Security Symposium (USENIX Security 22), pages
2747–2763, Boston, MA, August 2022. USENIX Association.

[32] Mathias Meyer. Continuous integration and its tools. IEEE
Software, 31(3):14–16, 2014.

[33] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Contin-
uous integration, delivery and deployment: A systematic review on
approaches, tools, challenges and practices. IEEE Access, 5:3909–
3943, 2017.

[34] StepSecurity, Inc. Stepsecurity - securerepo. https://github.com/
step-security/secure-repo#1-automatically-set-minimum-github\
_token-permissions. [Online; accessed 10-march-2023].

[35] Pablo Valenzuela-Toledo and Alexandre Bergel. Evolution of
github action workflows. In 2022 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER),
pages 123–127, 2022.

[36] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu,
and Vladimir Filkov. Quality and productivity outcomes relating to
continuous integration in github. ESEC/FSE 2015, page 805–816,
New York, NY, USA, 2015. Association for Computing Machinery.

[37] Mairieli Wessel, Joseph Vargovich, Marco A. Gerosa, and
Christoph Treude. Github actions: The impact on the pull request
process, 2022. https://arxiv.org/abs/2206.14118.

[38] Yiming Zhang, Yujie Fan, Shifu Hou, Yanfang Ye, Xusheng Xiao,
Pan Li, Chuan Shi, Liang Zhao, and Shouhuai Xu. Cyber-guided
deep neural network for malicious repository detection in github. In
2020 IEEE International Conference on Knowledge Graph (ICKG),
pages 458–465, 2020.

28

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 11,2024 at 21:31:41 UTC from IEEE Xplore. Restrictions apply.

